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Strong Primality Tests That Are Not Sufficient 

By William Adams and Daniel Shanks 

Abstract. A detailed investigation is given of the possible use of cubic recurrences in primality 
tests. No attempt is made in this abstract to cover all of the many topics examined in the 
paper. Define a doubly infinite set of sequences A ( n) by 

A(n + 3) = rA(n + 2) - sA(n + 1) + A(n) 
with A(-1) = s, A(0) = 3, and A(1) = r. If n is prime, A(n) -A(1) (mod n). Perrin asked if 
any composite satisfies this congruence if r = 0, s = -1. The answer is yes, and our first 
example leads us to strengthen the condition by introducing the "signature" of n: 

A(-n - 1), A(-n), A(-n + 1), A(n - 1), A(n), A(n + 1) 

mod n. Primes have three types of signatures depending on how they split in the cubic field 
generated by x3 - rx2 + sx-I = 0. Composites with "acceptable" signatures do exist but 
are very rare. The S-type signature, which corresponds to the completely split primes, has a 
very special role, and it may even be that I and Q type composites do not occur in Perrin's 
sequence even though the I and Q primes comprise 5/6ths of all primes. A(n) (mod n) is 

easily computable in O(log n) operations. The paper closes with a p-adic analysis. This 
powerful tool sets the stage for our [12] which will be Part II of the paper. 

1. A Certain Third-Order Recurrence. R. Perrin [1] defined the sequence 

(1) A(1) = 0, A(2) = 2, A(3) = 3, A(n + 3) = A(n) + A(n + 1), 
and observed that 

(2) nIA(n) 
if n is prime. He found no composite n that satisfies (2) although he searched for one 
over a large range; Malo [2] and Escott [2a] discussed Perrin's sequence but neither 
obtained such a composite. Much later, Jarden [3] discussed (1) and related se- 
quences but he also found no such composite. 

We learned of the problem from S. Haber who told us that there is none up to 
140,000. We rather quickly found that 

(3) n = 271441 = 5212 

does satisfy (2), and we first indicate the considerations that led us to this composite: 
The recurrence (1) is reversible, and we have 

A(0) = 3, A(-1) = -1, A(-2) = 1, A(-3) = 2,.... 

We rewrite (2) as 

(4) A(n) _ A(1) (mod n), 
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and now add 

(5) A (-n ) A A(- 1) (mod n), 

which is equally true if n is prime. We prove this later, deducing (4) and (5) from 
results valid for much more general sequences. 

One finds that 

(6) A(-29) = A(-ll) = A(-7) = A(-1) -1, 

so for these three primes we have not only congruence but even equality. Associated 
with (6) we find that (5) is satisfied by n = 72, 112, and 292. This does suggest that 

(7) p21 A( p2) 

probably holds for one or more primes p, but obviously the corresponding relation 

(8) A(p) = A(1) = 0 

does not hold for any p since A (n) increases monotonically if n > 0. 
But we do not need the full strength of (8) to obtain (7). One readily notes 

empirically, and we prove it below (again, under more general conditions), that 

(9) A(p2) -A(p) (mod p2), A(_p2) A(-p) (mod p2). 

The second congruence here enables us to deduce 

A(-p2) -A(-1) (mod p2) from A(-p) = A(-1) 

merely by replacing the A(-p) in (9) by A(- 1). 
We can therefore obtain (7) if we can find an A( p) not only divisible by p but also 

by p2. Heuristically, the probability of such a p equals l/p, and since 

- diverges to + oo, 
p 

we actually expect infinitely many such p. However, they should be very sparse, 
since the manner of this divergence suggests that 

log log pn - n 

if pn is the nth example. In any case, Pi 521 (we know of no others), and so (9) 
implies that p 521 satisfies (7). 

Now we come to a critical point in the investigation. The designation of 521 as p1 

implies that n = 72, 112, and 292 fail to satisfy (4) although they do satisfy (5). 

Conversely, n = 5212 satisfies (4) and fails to satisfy (5), since one computes 

A(-521) =154736 = 297 - 521 - 1 (mod 5212), 

and then uses (9). 
Besides n = 72, 112, and 292, one finds that n = 7 - 11, 7 - 29, and 11 * 29 satisfy 

(5) and fail to satisfy (4). Therefore, we strengthen our requirements and ask if there 
is a composite c where 

(10) cl A(c) and cj A(-c) + 1 

are true simultaneously. If, as suggested in [1], [2], even the first condition is rarely 
satisfied, then composite solutions of (10) should be very rare indeed. 

Happily, in the algorithm that we develop in Section 5, it requires no extra 
computation to evaluate A(n) and A(-n) at the same time. Au contraire; when n is 
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large it is actually much faster to evaluate them together. If we were to compute 

A( n) (mod m) or A(-n) (mod m) 

directly from (1), then that would require 0(n) operations. Our algorithm takes only 
0(log n) operations and gives us the sextet 

(11) A(-n - 1), A(-n), A(-n + 1), A(n - 1), A(n), A(n + 1), 
modulo an arbitrary m, all at one time. We call (11) the signature of n mod m. If 
m = n itself, we are asking in (10) for composites c = n that have signatures 

-, -1, -, -, 0, - (mod n), 

where we have left four entries blank. 
But since we have these numbers anyway let us look at some signatures for 

n = m =p = prime. 

p Signature (mod p) Type 

23 1, -1, 3, 3, 0, 2 ) 
59 1, -1, 3, 3, 0, 2 S 

101 1, -1, 3, 3, 0, 2 
3 0, -1, 1, 2, 0, -1 

13 0, -1, 7, 3, 0, -1 I 
29 0, -1, 9, 17, 0, -1 J 

5 3, -1, 2, 2, 0, 0 
7 5, -1, 5, 5, 0, 3 Q 

11 5, -1, 6, 6, 0, 7 

We prove below that every p is of one of these three types. In the S-type, the 
signature of p is merely the signature of n = 1, unreduced, namely: 

(12) A(-2), A(-1), A(0), A(0), A(1), A(2). 
In the I-type, the signature is 

(13) A(1), A(-1), p - 3 - D, D, A(1), A(-1) (D Ep - 3 - D), 
where 

(13a) D2 + 3D + 8=0r(modp). 

In the Q-type, the signature is 

(14) A, A(-1), B, B, A(1), C (B 3), 

where 

(14a) B3-B-1_0(modp), 

and 

(14b) A -B2 + 3B + 1 (mod p), 

and 

(14c) C_ 3B2-2 (modp). 
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Note that the parenthetical stipulations on the right of (13) and (14) make the three 
types disjoint: the S and I are obviously different; Q cannot be S since B E 3 = A(0), 
and Q cannot be I since B B. 

So now we strengthen (10) further and demand that the signature of c, like the 
signatures of all primes, be of one of these three types. Any n that has none of these 
signatures is certainly composite. For example, the previously mentioned n = 77 has 

25, -1, 46, 30, 29, 4, 

which not only fails to have A(77) = 0, but which also fails in other ways. 

2. The Cubic Fields. To strengthen our conditions still further we must identify the 
Q, I, and S primes. We return to (1) and note that A(n) is the solution of a 
third-order linear homogeneous difference equation which has the characteristic 
equation 

(15) X3 -x- = 0. 

This cubic has the discriminant -23 and the three roots 

a = 1.324717957, 
/3 = -0.6623589786 + 0.5622795121 i, 

-y = -0.6623589786 - 0.5622795121 i. 

The theory of difference equations now gives us A(n) explicitly: 

(16) A(n) = a' + fln + yn 

and this also holds for n < 0. In all the theory given below, (16) is essential. For n 
large, (16) gives us the good approximations: 

A(n) - (1.324717957)n, 

A(-n) - 2(l.150963925) n cos(2.437734932 n). 

We have monotonic growth on the right and slower oscillatory growth on the left 
where 1.150963925 = Ha. 

In the three conjugate cubic fields Q(a), Q(13), and Q(y), the rational primes 
behave in four ways: 

The Q primes p have a Jacobi symbol 

(17a) (-23/p) =-1, 

and so must lie in these arithmetic progressions: 

(17b) p = 23 k + 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, or 22. 

For any suchp, (15) factors as 

(18) x - 1 (x - a)(x2 + ax + a-') (mod p), 

where the quadratic factor is irreducible (mod p). For example, 

X3 - x - 1 -(x - 2)(x2 + 2x + 3) (mod 5). 

Since a is the only root (mod p) in (18), it follows from (14a) that a, which 
satisfies 

(19) a-B (mod p), 
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may be read directly from the signature. It also follows that 

(a2 ) (4 PB 4 ) -1, 

since the discriminant of the quadratic factor in (18) is a quadratic nonresidue of p. 
But (20) gives us nothing new since it follows from (18) and (17a). 

All primes p not in Q have a Jacobi symbol 

(21 a) (-23/p) + 1 or 0, 

and therefore lie in 

(21b) P = 23k + 1, 2,3, 4, 6, 8,9,12, 13, 16,18, or O. 

The I primes p have (15) irreducible. It is known, cf. [4], that these primes have a 
unique representation 

(22) 8p = u2 + 23v2, u > 0, v > O, 

and they do not have a representation 

(23) p = u2 + 23v2, u 0, v > 0. 

For example, 
8 3 1 + 23, 3 #4 u2 + 23v2, 

8 13 92+ 23, 13 #4 u2 + 23v2, 
8 29 = 52 + 23 . 32, 29 #4 u2 + 23v2. 

The I primes cannot have 0 on the right of (21b), and so -23 must have exactly 2 
square-roots (mod p). In fact, by (22), they clearly are 

(24) +-23 (- (mod p). 

Now, happily, (13a) gives us 

(2D + 3) -23 (mod p), 

so we can read 

(25) X-23 (2D+ 3) (modp) 

directly from the signature. 
Suppose some n has an I signature (13). Then the quadratic form 

(26) F (n,2D + 3, n ) 

has the discriminant -23. The quadratic field Q( -23) has class-number 3 and 
therefore precisely three reduced quadratic forms of discriminant -23. They are [4] 

(27) (1,1,6), (2,1,3), and (2,-1,3). 

These are abbreviations for 

(28) x2 + xy + 6y2 2x2 + xy + 3y2, and 2x2-xy + 3y2. 

The form F in (26) must reduce to precisely one of the three forms in (27). 
For the sake of any reader not familiar with reduction, we display a not-too-trivial 

example. Take n = 92761 = prime. Its signature is 

0, -1, 45335, 47423, 0, -1, 
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an I signature. Then 

F (92761, 94849,24246) - (24246,2135,47) 

-(47,27,4) '-(4,-3,2) '-(2,-1,3). 

Here, - means "is equivalent to", and each transformation 

(a,, bl , Cl (a2, b2, C2) 

is obtained by 

a2 = C, b2 = -b + 2Nc a, + '(b,-2 2)N, 

where the integer N is selected to minimize I b2 . 
By a simple algorithm [5] based upon the sequence of integers N, the n in (26) has 

a representation by that form in (28) toward which F reduces. In our example, 
x = 178 and y = 133 give 

92761 - 2 1782 - 178 133 + 3 1332. 
But 

n = 2x2 xy + 3y2 ? 8n (4x +y)2 + 23y2, 

and, if n is odd, 

n = xy + 6y2 ? n x+y 2 + 23( Y ) 

since x must be odd, and therefore y must be even. Whereas, if n = 2, clearly 

8 2 = 42 + 23.o2 and 2 u2 + 23v2. 
Therefore, if n has an I signature, and if n is prime, the F in (26) must satisfy 

(29) F - (2, ?1,3). 

The S primes p also satisfy (21a) and (21b), and this time we allow 0 in both 
equations. The S primes split completely in the cubic fields. Therefore 

(30) X -x- 1 = (x-a)(x- b)(x- c) (mod p) 

also splits completely. The S primes now have a unique representation (23) and they 
do not have a representation (22). For example, 

59 = 62 + 23, 472 u2+ 23v2. 
Clearly, (24) remains valid, but we now have no counterpart to (25) since the 
uninformative S signature tells us nothing. 

We are counting p = 23, the unique ramified prime, as an S prime since it has an 
S signature. Its special role is seen in 

- x - 1 -(x - 3)(x - 10)2 (mod 23), 
with its double root, unlike the three distinct roots in (30), and also in its degenerate 
representation: 23 = 23. 

To round out the foregoing we note that Q primes cannot have either representa- 
tion, (22) or (23), since both imply (24). 

We should also note that while a prime can have at most one representation by 
either (22) or (23), but not by both, a composite may have many representations, and 
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may have both, thus 

377 = 13 29 = 32 + 23 42 1 (532 + 23 32). 
8 

But here 13 and 29 are both I primes. We will need later the fact that a product of 
any number of S primes can only have the representations in (23). That is because 
the three forms in (28) constitute a group under composition for which x2 + xy + 6y2 
is the identity. A product of identities is the identity. Therefore if n is a product of S 
primes only, and if it has an I signature, then (29) must fail. Somewhat similarly, if n 
is a product of S primes only, and if it has a Q signature, then (17a) must fail. 

A fourth distinction among the S, I, and Q primes concerns the period of A(n) 
(mod p). This sequence is always periodic, but the period divides 

(31) p-1, p2 +p + 1, or p2 - 1 

according as p is in S or I or Q, respectively. The proof is again given later but we do 
note, at once, that if the period divides p - 1, then the signature of p (mod p) is 
clearly the signature of n = 1 unreduced; i.e., we have an S signature. 

It follows that if the period of a Q prime p divided (p - 1), and not merely 
(p + 1)(p - 1), that that p would have an S signature. But that cannot be since 
B E 3 in (14). If B = 3 in (14a), then p 123, which is impossible. It follows that some 
proper factor in (p + 1) must remain in the period. 

By Chebotarev's theorem, the S, I, and Q primes occur in the proportions 

(32)-- 6 3 2' 

asymptotically speaking. That is so because the Galois group of (15) is S3, the 

symmetric group on three letters. 
Definition. We now say that n has an acceptable signature (mod n) if 

(A) It has a Q signature with (14) and (14a, b, c), and if (17a) also holds with n 

written in place of p; or if 
(B) It has an I signature with (13) and (13a), and if (21a) holds without the 0, and 

if (29) also holds. Again, replacep with n; or if 
(C) It has an S signature (12), and (21a) holds with p = n, allowing the 0. 
Commentary. It can be questioned whether the inclusion of (14a), (14b) and (14c) 

in (A) is redundant. But (14a, b, c) are very cheap, arithmetically speaking, and so we 
include them in the definition. A stronger objection may be raised to the inclusion of 

(29) in (B). It is also fast but not as trivial as, say, (13a). An investigation in Section 
8 below suggests that there may be I-type composites in Perrin's sequence if we omit 

(29). To be safer, we are therefore including it. In contrast, our demands upon S 

signatures above are much weaker. That is because (12) is uninformative; it tells us 

nothing about (24) or (30). This will require our attention and we will return to the 

question in Sections 9, 10, and 11. 

3. Two Similar Sequences. The smallest negative discriminant for a cubic field is 

the -23 above. The next two are -31 and -44. The discriminant of 

(33) X3-x2-I = 0 
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is -31 and (33) gives us 

(34) A(1) = 1, A(2)-=1, A(3) = 4, A(n + 3) = A(n + 2) + A(n). 

This recurrence also reverses: 

A(O) = 3, A(-I) = 0, A(-2) = -2,.... 
Congruences (4) and (5) remain valid, and we now have 

(35) p IA(-p) and p IA(p)-1. 

Congruences (9) remain valid and since 

A(-Ill) = A(-I), 

again, we find that 

1211 A(-121), 

but, again, 121 fails on the right: 

121 t A(121) -1. 

This time, 

41 A(4)-1 and 41A(-4). 
This A(n) has a very similar O(log n) algorithm and again we have the three types 

of signatures, still given by (12), (13), and (14), but with A(n) having its new 
meaning. But here are changes: 

For I primes, 

(36) D2+3D+10 O=(modp). 

For Q primes, 

(37a) B3 + B + 1 _0 (modp), 

(37b) A-3B2+2 (mod p), 

(37c) C=B2-3B+l(modp). 

This time (16) holds for 

a= - 1.465571232, 
,B -0.232785616 + 0.7925519925 i, 
y -0.232785616 - 0.7925519925 i, 

and so now A(n) grows faster but rotates a little slower for n < 0. 
The three types of primes are as before with 23 replaced consistently by 31, e.g., Q 

primes have 

(-31/p) = -1, 

I primes have a unique representation 

8p = u2 + 31v2, 

and S primes split completely: 

(38) X 3 - X2 -I=_(x -a)(x -b)(x -c) (mod p). 

This time 31 is the sole ramified prime. The proportions of the three types of primes 
and their periods are as before. 
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Of course, the assignment of any prime to S, I, or Q will generally not be the same 
as it was before. Particular interest will attach to the 1/36 of the primes that are S in 
both cubic fields. There are only three such p < 1000. They are 

173 = 92 + 23 .22= 72 + 31 .22 

607= 202 + 23 32= 242 + 31, 

853 = 52 + 23 62= 272 + 31 22 

The relative scarcity of such p will have importance later. 
From (33) and (37a) it is clear that the realtionship between B and a for Q primes 

is not what it was in (19). We now reach ahead to the theory section and quote some 
of the general results proved there. They will enable us to deduce such relationships 
as in (36) and (37a, b, c) from a general theory. 

In this theory we have the cubic 

(39) X 3-A()x2 + A(-1)x-1 = 0, A(0) = 3, 

and the sequence 

(40) A(n + 3) = A(1) * A(n + 2) - A(-I) * A(n + 1) + A(n). 

Congruences (4), (5), (9) remain valid. So does (16). We are primarily interested in 
those cubics where (39) is irreducible and has the S3 group, as we do have in the -23 
and -31 examples. There are then the same three types of primes except that the 
ramified primes may act differently in the general case. 

The S and Q primes have the same signatures (12) and (14), but the congruences 
for B, A, and C in (14) are specific to the particular sequence (40). For a Q prime p, 
(18) generalizes to 

(41) 0-X -A(l)x2 + A(-l)x - I 

-(x -a)(x2 + (a -A(l))x + a-') (mod p), 

and from its unique root a (mod p) we obtain the important relationships: 

(42a) B =[A()2 -A(-l)] a-A(l)a2 (mod p), 

(42b) A -a-2+2a(modp), 

(42c) C a2 + 2a'1 (mod p). 

It is only in Perrin's sequence (A(1) = 0, A(-1) -1) that (42a) gives B a 

(mod p). 
In the theory, it is natural to give a the central role, and that gives us (42a, b, c). 

Whereas, operationally speaking, we obtain the signature (14), and B not only has 
the central position, literally speaking, but it is also preferable to give it the central 
role, computationally speaking. We therefore invert (42a) by squaring it and reduc- 
ing the resulting quartic in a by the use of 

(43) a3 - A(l)a2 + A(-l)a - _ 0 (mod p). 

That gives us a as a function of B instead. For our present -31 case that function is 

(44) a-B2+1(modp). 
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With a as a function of B we now obtain the cubic satisfied by B. This is (37a) in 
the present case. We then obtain A and C as functions of B from (42b, c). These were 
(14b, c) in Perrin and (37b, c) in the present case. 

In contrast to the universal Q signature (14), the general I signature does not 
always remain (13). If the discriminant of (39) is d, the I signature is 

(45) A(1), A(-1), D', D, A(1), A(-1), 
where 

(46) D' + D A(1)A(-1) - 3, 

and 

(47) +(D - D')-A_d 

Note that -31 and -23 both have (13) since they both have A(1)A(-1) = 0. Note 
that (1 3a) and (36) are both obtained by squaring (47) and that they are valid for the 
I prime p = 2. Note that we can now drop the parenthetical (D E D') since d 0 
(mod p) only for the ramified primes. Finally, we stress the point that d is the 
discriminant of the cubic polynomial and not necessarily that of the cubic field. In 
-23, -31, and -44 these two discriminants are equal, but that is not always the case 
in (39). 

Now we return to the -31 sequence (34) and quickly complete its treatment. The 
arithmetic progressions for Q, I, and S primes are obvious. The quadratic field 
Q( -1 again has class number 3, and there are three reduced forms: 

(48) (1,1,8), (2,1,4), and (2,-1,4). 

For I primes, the relation equivalent to the previous (29) is now 

(49) F n,2D+3 + (2 +114) 

The definitions of acceptable signatures for (34) is now clear. 
In the -44 sequence, some things are familiar and some things are new. We have 

(50) X3 -x2 -X -- 1 = 0 

A(1) = 1, A(2) = 3, A(3) = 7, 

51) A(n + 3) = A(n + 2) + A(n + 1) + A(n), 

A (O) = 3, A (- 1) = A (-2) =-1. 

We now have 

52) pI A(-p) + 1, pI A(p) - 1, 

md behavior like this: 

A(-5) = A(- 1)-- 1, 251 A(-25) + 1, 25 1 A(25)- 1, 

ooks familiar. 
But now 2 and 11 both ramify and some things are new. From (51), all A(n) are 

)dd. We have 

53) 2pI A(-2p) + 1 
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for every p, including p = 2, but we also have 

(54) 2p I A(2p) - 3, 

and therefore 2p always fails on the right since 

2pt A(2p) - 1. 

Let us prove (53), (54) at once by using a Doubling Rule that lies at heart of the 
O(log n) algorithm. 

Doubling Rule. For all A(n) above, and all n, we have 

(55) A(2n) = (A(n ))2 - 2A(-n), A(-2n) = (A(-n ))2 - 2A(n). 

Proof. 

(A(n))2 (an + f3n + yn)2 = a 2n + 132n + y2n + 2(/nyn + anyn + a fnn) 

But the last term equals 2A(-n) since a/-y = 1 for all of our A(n). Therefore, 

A(2n) = (A(n ))2 - 2A(-n), 

and replacing a, ,B, and -y by their reciprocals gives us the second equation in (55). 
D 

Therefore, (52) gives 

A(2p) 12- 2(- 1) 3 (mod p), 

A(-2p) - 12-2 1 -1 (mod p). 

Since A(n) 1 (mod 2) for all n, (53) and (54) follows. O 
Q signatures now satisfy 

(56a) B3 + B2 + 3B-1 0, 

(56b) A B2 + 3B + 3, 

(56c) C-2B2 + B + 4, 

and give us 

(57) a=(B2 +2B+3), B=2a-a2. 

They are acceptable if 

(58) (-Illn)= -1. 
I signatures now are 

(59) A(1), A(-1), n - 4 - D, D, A(1), A(-1), 
(with 4 instead of 3), and where 

(60) D2 + 4D + 15 0 (mod n). 

Also new is the unique representation 

(61) 3p=u2+11v2, u>0,v>0, 

for I primes. 
This time, -44 is not a fundamental discriminant as -23 and -31 were. The 

corresponding quadratic field Q( -11) has discriminant -11, not -44. It has class 
number 1 and only one reduced form: (1, 1, 3). But the order in this field of 
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discriminant -44 does have class number 3 and the forms 

(62) (1,0,11), (3,2,4), (3,-2,4). 

Acceptable I signatures must have 

(63) (-ll/n) = +I 

and 

(64) F_ n,2D+4, n (3, +2,4). 

S primes have the unique representation 

(65) p = u2 + I IV2, u '> 0, v > 0, 

and acceptable S signatures have 

(66) (-ll/n)?+I or 0. 

The ramified p = 11 is an S prime, but p = 2 simply does not fit this classifica- 
tion. The Kronecker symbol (-11/2) = -1, and obviously neither 2 nor 6 equals 
u2 + 1 1v2. In those ways, 2 looks like a Q prime. On the other hand, the cubic splits 
completely (mod 2), the period equals 1 2 - 1, and its signature is S (in a trivial 
way). In those ways, 2 looks like an S prime. The ambiguity comes from the two 
discriminants, -44 and -11. In Q( -11), 2 does not ramify; it is inert instead. We 
already saw unusual behavior in the composites 2p, and we may anticipate other 
such anomalies with even composites. In fact, (56b, c) assumed that the modulus was 
odd. 

For reference, we record S primes < 1000 common to -23 and -44: 

599 = 242+ 23 = 182 + 11 52, 

883 = 262 + 23 * 32 = 282 + 11 * 32 

991 -_ 282 + 23 32 = 102 + 11 .92 

and common to -31 and -44: 

47=42+31 = 62 + 11, 

617 = 112 + 31 *42 = 212 + 11 42. 

There is no S prime < 1000 common to all three fields. That is not surprising since 
v(1000) = 168 < 216 = 63. 

As an exercise, we compute the real root a of (50) with the Doubling Rule. 
Starting with A(-1) = -1, A(1) = 1, we double the arguments five times and obtain 
A(32) = 294294531. Since this is very close to a32, we have a = 1.839286755. 

4. Reasons Why Composites with Acceptable Signatures Must be Rare. With the 
foregoing as background, we now give four reasons to believe that such composites 
are rare, leaving it open, in this section, whether they do exist. Let us first contrast 
our third-order A( n) with the classic second-order V( n) of Lucas. Here, 

(67) V(1) = 1, V(2) = 3, V(n + 2) = V(n + 1) + V(n), 
and we have 

(68) n I V(n) - V(1) 

for all primes n and for some composites. 
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There are two kinds of primes for (67) besides the ramified p = 5. The S primes p 
have (5/p) ? + 1, x2 - x - 1 -0 splits (mod p), and the period of V(n) (mod p) 
divides p - 1. The I primes p have (5/p) -1, x2- x - 1 0 is irreducible 
(mod p), and the period divides 2(p + 1). Each type comprises one-half of all 
primes. 

Thus, in V(n), all primes have periods bounded linearly: by p - 1 or by 2(p + 1), 
whereas, in A(n), 5/6 of the primes have periods bounded quadratically: by 
p2 + p + 1 or by p2 - 1. Further, the actual periods in A(n) are odd at least 1/3 of 
the time and are not infrequently themselves prime. Thus, in Perrin's A(n), p = 2 
has the period 7 and p = 3 has the period 13. In V(n), the periods are usually even, 
usually much smaller, and seldom are they prime. Without arguing it more fully, this 
makes it harder to find composites satisfying 

c I A(c) -A(1), 

even taken alone, than it is to find composite solutions of (68). 
Aside from the larger period bounds in A(n) for most of the primes, it also occurs 

less often that the S and I primes have periods that are smaller than these bounds. 
In V(n), 1/2 of the S primes have periods dividing (p - 1)/2. Whereas, in Perrin, 
the S primes have periods dividing (p - 1)/2 if, and only if, we have 

(69) (a/p)= (b/p) (c/p) = 1 

in (30). Since abc -1, it suffices that (a/p) = (b/p) = 1. This should occur for 1/4 
of the S primes, not 1/2. In Appendix 1, we list the periods of the first 120 p in 
Perrin; in fact, among the 16 S primes there, four have periods of (p - 1)/2. The Q 
primes frequently have periods < p2 - 1 since (p - 1) (p + 1) is always divisible 
by 24, and is divisible by 5 for 2/5 of the p, etc. 

The second reason for the rarity of acceptable composites is the fact that the 
density of the S primes is only 1/6. That will become very clear as we proceed and 
shows the value in using cubic polynomials having the S3 group. 

Our third and fourth reasons are very strong since they sieve out large classes of 
composites c divisible by a prime p by merely stipulating 

(70) A(-c) iA(-1) or A(c) ZA(1) (modp), 
without demanding the much stronger (mod c) condition, let alone the even stronger 
acceptable signature condition. 

We use 

(71) A(mp) -A(m) (mod p), 

which we prove later, and from which (4) and (5) follow immediately. We want all 
composites 

c= mp 

that satisfy the relatively weak (70). 
Letp be fixed. By (71), (70) becomes 

(72) A(-m) E A(-1) or A(m) z A(1) (mod p). 

Now 
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for all k = 0,1,2, ... by induction using (71). Let W = W(p) be the period of A(n) 
(mod p). It equals p - 1, p2 + p + 1 or p2 - 1, or some divisor thereof, according 
as p is S, I, or Q, respectively. In any case, W is prime to p. After we go through W 
multiples of p: 

p, 2p, 3p, ...,Wp, 

A(mp) will repeat (mod p). Therefore, for every m such that 

(74) mp =kWp +pn, k =0,I,.., n = 1,2, ....I 

we do have 

(75) A (-mp)-- A(- 1), A (mp)=- A(1) (mod p) 
and c = mp does not satisfy (70). 

In (74), we can restrict n to those values where n < 1, 2, or 3 for S primes, Q 
primes, or I primes, respectively, since, for all larger powers pr, one can show that 
these powers already lie in the arithmetic progressions 

(76) mp=kWp+ pn, k= 0,1,.... 

where n is so restricted. 
We prove below that all m other than those given by (76) satisfy (72) if p is an I or 

Q prime. Therefore, all such composites mp must certainly fail to have acceptable 
signatures. Let us see the effect of that in Perrin's A(n). We have 

W(2) = 7, W(3) = 13, W(5) = 24, W(7) = 48. 

Therefore, (75) holds for, and only for, those multiples of p given by 

c= 14k + 2,4,8 (forp = 2), 
c = 39k + 3, 9, 27 (forp = 3), 

c - 120k + 5,25 (forp =5), 

c = 336k + 7,49 (forp = 7). 

All other multiples of p, namely: 

c = 14k, 14k + 6, 14k + 10, 14k + 12, 
c=39k,39k+6,39k+12,39k+15,...,39k+36, 

etc., must certainly fail (10) since they already fail the weaker (75). With p 2, we 
therefore delete 2/7 of all composites; with p = 3, we delete 10/39 of those 
remaining, etc. This sieving leaves only relatively few composites. Of course, the -31 
and -44 A(n) behave in similar ways. 

A practical remark concerning the sieving: Since the arithmetic progressions to be 
deleted are much more numerous than those in (77) which are to be kept, it is clearly 
quicker to delete all multiples of p and then to put those in (77) back in. 

Sieving with the S primes is a delicate matter. For example, take p = 59 or 101 in 
Perrin. Then, the same restrictions hold: we must have 

m 59 = k 58 59 + 59, or m - 101 = k - 100 101 + 101, 
or else (75) fails. In fact, in all three A(n) examined above, namely, those for -23, 
-31, and -44, we do not know of a single S prime where the restrictions in (76) do not 
hold. Nonetheless, it is not proved that (76) holds for all S primes in all three of 
these A(n). 
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In the general theory (39), it is not difficult to construct S primes that are not 
restricted by (76). For example, 

X- 7X2 + 21x - = 0 
has p = 29 as an S prime that has the period W = 7. Then take i = 9. Clearly, 

9 29 # k- 7 29 + 29, 
and yet, with m = 9, (75) is true. We designate such an m, that lies outside of the 
progressions (76), but for which (75) is true, as an outsider. We will see the 
importance of this concept later. 

For the present, the possible existence of such outsiders therefore makes it 
improper to sieve with S primes unless they have been examined numerically, like 59 
and 101 above, and found to be free of outsiders. 

Our fourth reason for the scarcity of acceptable composites is much simpler; it has 
no such subtle complications. Return to (72) and now keep m fixed and let p vary. 
Then any p with mp acceptable must obviously divide the 

(78) G.C.D. of A(-m) - A(-l) and A(m) - A(l). 

Consider Perrin's A(n) and m = 2. The GCD equals 2 and p could only be 2 itself. 
Likewise, for m = 3, 5, 7, 13, 19, and 31, the GCD equals m itself and c = m2 is the 
only possible acceptable composite. But we already saw in Section 1 that c = p2 is 
not acceptable for all p < 521. For other m < 40, we find the following: For some m 
such as 6, 10, 12, 20, etc., the GCD equals 1 and no c = mp even exist. For m such 
as 11, 23, etc., the GCD equals 2m and both possibilities, c m2 and c = 2m, have 
already been eliminated. For m such as 14, which has GCD 3, the only c = 14 3 

6 7 has already been deleted by the smaller m = 6. 
The only m < 40 that require a new idea are the prime powers: m = q". Here, q 

divides the GCD, and we may eliminate c = qn recursively by a generalization of 
(9) that we prove later. That is 

A( = l)A ( p)(mod Anl A_ +)- A(-" (mod ptll 

Actually, all the GCD for m < 40 have few prime divisors, and one easily shows 
that no c = mp can be acceptable for these m. One could easily go beyond m = 40 
by programming (78). If there is any composite with an acceptable signature, and 
there is, this progression of impossible m must be interrupted. 

5. The Algorithm. Two of the acceptable composites for Perrin's A(n) that were 
just alluded to are 

C= 7045248121 and 7279379941. 
They have acceptable S-signatures and are discussed in detail in the next section. 
But since they, and other acceptable composites that we have for the -23, -31 and 
-44 A(n), have at least eight decimal digits, let us return to our construction of the 
0(log n) algorithm. The direct 0(n) computation by (1), (34), or (51) would surely 
be wasteful and tedious. 

Suppose we want the signature of N (mod m) and already have that of n (mod m) 
for a certain n < N. We have the sextet in (11) (mod m). We use the Doubling Rule 
and compute those A(j) having doubled arguments, namely, 

(79) A(-2n - 2), A(-2n), A(-2n + 2), A(2n - 2), A(2n), A(2n + 2), 
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all (mod m). If A(j) is the Perrin sequence, we can fill in the gaps in (79) as follows: 
First, 

A(-2n - 1) = A(-2n + 2) - A(-2n), A(2n - 1) A(2n + 2) - A(2n). 
Then, 

A(-2n + 1)-=A(-2n -1) + A(-2n -2), 

A(2n + 1) =-A(2n - 1) + A(2n -2). 
Now we have five successive values centered around A(-2n) and A(2n), and, ipso 
facto, we have the signatures of 2n and 2n + 1 (mod m). 

Now write N in binary and read it from left to right one bit at a time. The first bit 
reads 1. The first two equal 2(1) or 2(1) + 1. The first k equal some number n, and 
the first k + 1 equals 2n or 2n + 1 according as the (k + I)st bit equals 0 or 1. 
Therefore, in O(log N) operations we have the signature of N (mod m) starting with 
the known signature for n = 1. 

The algorithms for -31 and -44 are only slightly different and are left as an 
exercise. The reader who knows a little programming can now write a program for 
his own machine. For those who know Hewlett-Packard programming, see 
Appendix 2. 

It is clear that the main computation time, when N is large, is used in computing 
the squares A(n)2 for the Doubling Rule. That is also true in most of the classical 
primality tests, and much of this time can be saved by using Toom-Cook arithmetic 
[6]. 

6. The Carmichael Solutions. The composites listed at the beginning of the last 
section are 

C, = 7045248121 = 821 1231 6971, 

where 

821 =272+23 22, 1231 =322+23.32, 6971 = 182+23.172, 
and 

C2 7279379941 = 211 3571 9661, 

where 

211 = 22 + 23 32, 3571 = 582 + 23 32 and 9661 = 472 + 23 182. 
Carmichael numbers 

(80) C =pI 'P2 *P3... 

are square-free products of three or more primes p, such that 

(81) pI- 1lC- 1 

for each i. It follows that 

(82) C I aC-a 

for every integer a. 
C, and C2 are Carmichaels whose factors are S primes for Perrin's A(n). Since the 

period of A(n) (mod pI) divides p, - 1 it also divides C - 1. Therefore the signature 
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of C (mod p,) is 

(83) 1, -1, 3, 3, 0, 2 

for each i. Therefore the signature of C (mod C) is also that in (83). They are 
acceptable since both have S signatures and C 16 or 1 (mod 23). 

Wagstaff [7] computed all 2163 Carmichaels < 25 109. Among all of these only 
C, and C2 are products of S primes for the -23 sequence exclusively. 

For the -31 sequence, we have three such Carmichaels: 

C3 = 6693621481 = 607- 1213 9091, 

C4= 8904870001 = 31 173 521 3187, and 

C5 = 22008493921 = 431 1721 29671. 

Note that C4 contains the ramified S prime 31. An interested reader can easily 
supply the quadratic partitions 

pi = U2 + 31v2. 

For example, 521 = 52 + 31 42, a sum of a square and a perfect number. 
In the -44 sequence, one finds that there are more, relatively small, S primes than 

occur in either of the -23 or the -31 sequences, and therefore one expects more 
Carmichael solutions < 25 109. Actually, there is only one: 

C6= 1833328621 = 103 3877 4591 

where 

103 = 22 + 11 32, 3877 = 592 + 11 62, and 4591 = 462 + 11 152. 

As Casey Stengel used to say, "You could look it up!" 
It is interesting to verify how all of the Cl above elude the sieving in Section 4 that 

gave us the "3rd and 4th reasons" there. For example, compare 

C, = 10465 820* 821 + 821 = 4653 1230 1231 + 1231 

= 145 6970 6971 + 6971 

with (76) for the third reason. Thus, C, has nothing to do with the outsiders 
introduced there. Actually, we prove below that if p is an S prime and mp has an S 
signature (mod p), then m cannot be an outsider of p. Therefore, without calcula- 
tion, we know that the same thing happens in all of our Cl. 

Again, in C2, take m-211 3571 = 753481. Since 

m 9661 = 78 9660 9661 + 9661, 
we must have 

A(-m) -A(-1) and A(m) A(1) (mod9661). 
Therefore, C2 = m 9661 is not deleted by m "for the fourth reason", and, since it is 
not deleted at all, the " progression of impossible m " that is referred to at the end of 
Section 4 must certainly "be interrupted" at m = 753481 if not sooner. 

None of these six C, has an acceptable signature in either of the other two A(n). 
For example, consider C3 in Perrin. Since A(607 1213) 9051 4 0 (mod 9091), it 
must fail for this fourth reason condition. Similarly, C, fails in the -31 sequence 
since A(821 - 1231) 4749 (mod 6971) for that sequence. 
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Of course, a C, would be acceptable in another A(n) if all of its prime factors were 
also S primes in that A(n). But that does not happen in these six C,. Consider 
p = 29671 in C5. We have 

p = 682 + 23 .332 = 602 + 31 .292 = 862 + 11 .452 

so p is S in all three fields. Further, since 

C5 = 25 29670- 29671 + 29671, 

we must have 

(84) A(-C5) -A(-1), A(C5) -A(1) (mod29671) 

in all three sequences. Nonetheless, C5 does not have an S signature in either the -23 
or the -44 sequence. The other two factors in C5 are 431 and 1721. They are both Q 
in Perrin and are Q and I, respectively, in -44. As we indicated above, there is no 
p < 1000 that is S in all three fields, and one notes that each of the six C, has at least 
one prime factor < 1000. 

Another point worth recording: Take m = 431 - 1721 741751, which is a little 
smaller than the m = 753481 examined for C2. By (84), C5 would not be sieved out 
by this smaller m for Perrin's sequence. However, the Q prime 431 has a period 
W = (4312 - 1)/2 in Perrin. Since 

C5 = 549* W- 431 + 72671 *431, 

and 72671 is neither 1 nor 431, C5 would have already been sieved out by 431 for the 
third reason. 

We will return to Carmichael solutions later. 

7. The O, and the 1> J. Owings suggested the following possibility. Let p and 
2p - 1 both be S primes, and suppose, as in Section 4, that 

(85) W(2p - 1) I p - 1. 

We argued heuristically in Section 4 that (85) has a probability of 1/4. If (85) does 
hold, then 

(86) N = p(2p- 1) 

has an acceptable S signature since N= (2p + l)(p - 1) + 1. We systematically 
searched for such N < 109 for Perrin's A(n). One can restrict the search to p 
satisfying 

p_ 1, 13, 25, 39 or 41 (mod46) 

since only suchp have (p/23) = (2p - 1/23) = + 1. 
There are only three such N < 109 where p and 2p - 1 are both S primes. In the 

first, 

N = 4567 9133, 
N fails since W(9133) t 4566. But 

(87) 0 = 4831 9661 = 46672291 

is acceptable, and it is much smaller than our C,. Note that the factor 9661 also 
occurs in C2, and that, in this O,, m = 4831 already interrupts the "progression of 
impossible m." 
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The third N occurred just before our 109 limit and is also acceptable. It is 

(88) 02 = 22027 44053 = 970355431. 

The eight acceptable composites so far displayed, the six Cl and the two 01, are 
insufficient to settle a question that arises in Section 9 below. We therefore decided 
to compute more O, since that is quite easy to do. 

In the -31 sequence, there are eight candidates N < 5 109 starting with N = 607 
1213. But they all fail; we have no 01 for this sequence. 
In the -44 sequence, there are 14 candidates N < 5 109 starting with N = 199 

397. Three succeed: 

03 = 16087 32173= 517567051, 

(89) 04= 24379 48757 = 1188646903, 
05 = 32077 64153 = 2057835781. 

We then returned to -23. There are 25 additional candidates N < 25 109. Five 
succeed: 

06 = 40459 80917= 3273820903, 

07 = 50647- 101293 = 5130186571, 

(90) ?8= 51199- 102397= 5242624003, 

09= 85837 171673 14735895301, 

0 = 102259 204517 = 20913703903. 

We will return to the 0, later. 
An obvious generalization of (86) is 

N =p(kp-k + 1) 

for k = 3,4,.... We examined only 

(91) N = p(3p-2), 

where we need 

(92) W(3p - 2) 1 p - 1. 

If (92) holds, (91) is acceptable with an S signature, and we call it T. 
We expect the number of T, to be somewhat less than the number of 0, up to some 

large limit M. Specifically, we expect 

(93) 
number of T 8 2 = 0.726 

(93) ~~~~number of 0, 9 3~~.2 

as M - oo. Here is the argument: the probability of (92) is now 1/9 instead of 1/4. 
But 31 p(2p - 1) for 2/3 of the trials as p runs through the integers while 

31 p(3p - 2) for only 1/3 of the trials since 313p - 2. Finally, p in (86) N 2N71 
while p in (91) N 3N7T as M - oo. Putting the three variables together gives the 
right side of (93). 
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The statistics in Perrin do not agree with this at all if we go to only 109. There are 
no less than 14 candidates (91) < 109, beginning with N = 883 2647. Of these, five 
are acceptable: 

T, = 3037- 9109 = 27664033, 

5851 17551 = 102690901, 

T3 - 6607 19819 = 130944133, 

T4 = 13487 40459 = 545670533, 

T5 = 16883 50647 = 855073301. 

Note that T, is our smallest acceptable so far and it also gives us a new m = 3037. 
With a limit of 109, the v in p = u2 + 23V2 has hardly gone through one complete 

set of residues (mod 23), and it is not surprising that (93) is so wrong at this limit. 
Cubic fields have a number of famous problems where the early distribution is quite 
different than the asymptotic distribution, e.g., cf. [8] for Kummer's conjecture or [9] 
for the density of cubic fields. Note that the Ol in Perrin began with 2 successes out 
of 3 candidates but ended with 7 out of 28, just as predicted. 

We will return to the Ti also. 

8. Questions. (A) Are there infinitely many acceptable composites for each of our 
A(n)? Almost certainly, yes, but we cannot prove it. Almost certainly, there are 
infinitely many Carmichael solutions, and yet it has never been proved that there are 
infinitely many Carmichael numbers. 

On a large computer, one could create Carmichael solutions almost at will, as 
follows: Supposep, 2p - 1, and 3p - 2 are all prime. Therefore, p must be 6m + 1. 
It cannot be 6m - 1 since that implies that 2p - 1 = 12m - 3 is not prime. 
Consider their product 

(94) n = (6m + 1)(12m + 1)(18m + 1). 

Since n - = 36rn (36m2 + 1lm + 1), n is a Carmichael number. 
Therefore, from our candidates (86) for 0, and whether (85) holds or not, we 

determine if 3p - 2 = 18m + 1 is an S prime. Sooner or later that will surely 
happen. Then (94) is a Carmichael solution. Here are three examples. 

From N= 4951 . 9901, which failed in -44, we find that 14851 is an S prime. 
Therefore, 

(95) C7 = 4951 9901 14851 = 727993807201 

is acceptable for -44. 
Similarly, in Perrin from 07 we have 

(96) C8 = 50647 - 101293 151939 = 779475417411169. 

Also from Perrin we have 

(97) C9 = 69991 - 139981 209971 = 2057172011015041. 

Our 24 acceptable composites, nine Cl, ten 0, and five 1, were all computed on a 
pocket calculator HP - 41C. That makes it clear what could be done on a big 
machine. 

(B) Are there acceptable composites common to -23 and -31, -23 and -44, etc? 
Almost certainly, but they should be very sparse. It would be instructive to know the 
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smallest -23, the smallest -31, the smallest -23 and -31, etc. It would be instructive 

to have complete tables up to some large M. That cannot be done on a HP - 41 C. 

(C) Is it feasible to make such complete tables up to, say, M= 1010 or larger? 

Presumably so. One would want to do a lot of preliminary sieving as we suggest in 

Section 4. If there are only a modest number of acceptable composites up to some 

big M, then one could use the algorithm for one or more A(n) as a practical 

primality test. That would be like the Selfridge-Wagstaff test. There are many 

variations. We will not labor the point. 
(D) The most important question before us is this: Is there an acceptable 

composite with a Q or I signature? We know of none for the -23, -31, or -44 A(n). 

We do not know if they exist. We do not know how to construct them. If there really 

are none for -23, -31, and -44, that would be very important since the algorithm 

would give us an efficient, sufficient condition for 5/6 of all primes. Use of two of 

these A(n) would raise the fraction to 35/36 and all three would suffice for 215/216 
of all primes. That is such an enticing possibility that we must investigate this 

question. 
If we had the table referred to in (C), that could certainly help. If one or more 

such composites turned up we could analyze them and understand the problem 

better than we now do. If there were none, it might encourage us (even more) to 

prove that there are none at all. Absent a table, and since we cannot construct one 

on the aforementioned HP - 41C, we return to the concept of the outsider in Section 

4. 
We had X3 - 7X2 + 21x - = 0 there with an S prime 29 that has a period 

W = 7. Then m = 9 is an outsider for 29 since 

m 29 #& k- 7 29 + 29, 

and yet 

A (-9 -29) =_ A (- 1), A (9 -29) =_ A (1) (mod 29). 

In Section 16 we will learn how to construct composites N = pq, where p and q 

are S primes that are mutual outsiders of each other, and such that the signature of 

N (mod N) is an I or Q signature. This is accomplished by forcing the roots of the 

cubic (mod N) to obey the power laws that they would obey (such as a' _ b) if N 

were an I or Q prime. We can do that if we do not select the A(n) in advance, but 

rather allow A(1) and A(-1) to take on any values needed by the construction. 

Consider two examples. Let 

(98) x3 + 14X2 + 126x-1 = 0, 

and let N = 35 = 5 7. Here 5 is an S prime with W = 4 which has 7 as an outsider. 

Conversely, 7 is S with W = 3 and 5 as an outsider. The signature of 35 (mod 35) is 

(99) 3, 126, 14, 14, -14, 3. 

From (42a) we have 

14 = B 70a + 14a2 (mod 35), 

which with a3 + 14a2 + 126a - 1 (mod 35) is satisfied by a = 1. Then (42b, c) give 

us A _ C 3, as they are. So (99) is a Q signature since 14 4 3 (mod 35). But (99) is 

not an acceptable signature. The cubic in (98) has the discriminant d= -4910611, 
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and, since (d/5) = (d/7) + 1, obviously we also have (d/35) + 1, and not -I 
as it should be. 

It is clear that if N were the product of any number of S primes, for any A(n), and 
if N (mod N) has a Q signature, then N could never be acceptable since it could 
never have (d/N) = -1. 

Now let us construct such an N with an I signature. That will not have the same 
defect if we stay clear of ramified S primes since we will have (d/N) + 1, as we 
should. Consider 

(100) x3-862X2-22x-1I =0 

and N= 1537 = 29 53. Since d = -2202681203 = -89 24749227, it is prime to 
N. Here, 29 is S with W = 7 and 53 as an outsider. And 53 is S with W = 13 and 29 
as an outsider. The signature of N (mod N) is 

(101) 862, -22, 456, 558, 862, -22. 

Further, we have 

456 + 558 862(-22) - 3 (mod 1537), 

( (-1435) d (mod 1537), 

in agreement with (46) and (47). So (101) is an I signature and (d/1537) + 1 as it 
should. From (102) we have 

(103) F = (1537, -1435, 358611). 

(Note that we had to choose the odd -1435 and not its congruent + 102 since d is 
odd. The discriminant of (x, y, z) is y2- 4xz and is odd if, and only if, y is odd.) 

Unlike our d = -23, -31, and -44 sequences, where Q(Vd) had class number 3 
and therefore only one S form and only two I forms, the present large d has Q(/d) 
with class number 15420. There are 5140 S forms and 10280 I forms, and (as always) 
the 5140 S forms comprise a subgroup under composition (of index 3) in the class 
group of order 15420. If there were no easier way, we would now have to check 
whether F, which is already reduced, satisfies 

(104) F - one of 10280 I forms, 

since (101) is now acceptable if, and only if, (104) is true. 
We need not do that. The forms that represent the S primes 29 and 53 must be S 

forms and lie in the subgroup. They are 

F1 = (29, 15, 18988633) and F2 = (53,49, 10390017), 

and the composition of F1 and F2 is F since [10] 

1537 = 29 53, -1435 = 15 (mod2 29), -1435-49 (mod2 53). 

Therefore, F is also one of the 5140 S forms in the subgroup and any prime that it 
does represent, such as 

445499 = 82 1537 - 8 1435 + 358611, 
must be an S prime. Therefore, (104) fails and 1537 cannot be a prime. 

It is now clear that if N were the product of any number of S primes, for any 
A(n), then N could never be acceptable if it had an I signature since its F would 
always be equivalent to an S form. 
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We repeat: we know of no such Q or I signatures of N (mod N) for the -23, -31, 
or -44 sequences, but, if there are any, the Jacobi symbol for Q signatures and the 
F-test for the I signatures will protect us against them. If such an N is square-free, as 
N = 35 and 1537 are, it is essential that there be outsiders in that A(n). For if 

N =P p P2 * Pn 
with each p, an S prime, and if 

A(N) A(1), A(-N) A(-1) (mod p1) 

for each i, and if there are no outsiders, then W( p,) N - 1 and the signature of N 
(mod p,) is an S signature for each i. Therefore, N has an S signature (mod N) and 
cannot be either Q or I. 

Since all Q and I composites that are divisible only by S primes are innocuous, we 
may now rephrase the question in (D). Are there any other Q or I composites? This 
is the next question. In [12] we answer this question using a powerful new method. 
See the end of Section 17 below. 

We now return to our numerous S composites to decide what to do about them. 

9. Quadratic Representations and the z-Test. In Section 6 we called Cl acceptable 
since it does satisfy (12) and (21a). Nonetheless, it must be composite unless it has 
precisely one representation (23). Actually, we have an embarrassment of riches: 

Cl = 113892 + 23 173402 = 246832 + 23 167282 
(105)22 22 = 436272 + 23 149522 = 697632 + 23 97322. 

Since each representation u2 + 23V2 gives us two square-roots for -23 + ulv, 
C, cannot be prime. If we had a convenient algorithm for computing all the 
representations of 

n = u2 + 23V2 and 8n = U2 + 23V2 

very efficiently, say in O(log n) operations, we could add that to Perrin's A(n) and 
thereby easily settle the primality of all S signatures. We know of no such algorithm. 

Similarly, C2 through C9 each has four representations Cl = u2 + Nv2, where N is 
the appropriate value 23, 31, or 1 1. (Since C4 has four factors, one might expect eight 
representations, but one of the four factors is the ramified 31. Its degenerate 
31 0 02 + 12. 31 does not double the number of representations.) 

If p is prime, and if 

(106) mp = u2 + Nv2 

for certain m and any N > 0, there is a very efficient algorithm [5] for computing the 
unique solution. The first phase is the solution of 

(107) R2=-N (mod p). 

Of course, for I primes p, we can read R directly from the signature, as in (47). But 
the S signature is uninformative, and we must compute (107) instead. Having 
R2 + N = Sp, we have a quadratic form 

(108) (p,2R,S) 
of discriminant -4N. Reducing this to a reduced form then easily gives us (106). See 

[5]. 
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If we use this algorithm for (106) with "p"= C1, N= 23, m = 1, one of two 
events must occur: Either (1): the process breaks down and gives no solution, 
thereby revealing that C1 is not a p, or (2): the process does work and gives us 
exactly one of the four solutions (105). A third possibility, that we obtain a solution 
of 8C1 - u2 + 23V2 instead, cannot happen in this case since C1 is a product of S 
primes only. 

The four solutions (105) are equally true, none has any special precedence, and if 
the second event occurs it seems almost contrary to the principles of Thomas 
Jefferson. Nonetheless, that is what happens: the algorithm for (106) gives us 

R = 1415929016 
for (107) and therefore 

C1 - 436272 + 23 149522 
for (106). 

Let us analyze this curious outcome. If p = 25(2k + 1) + 1, the first step in the 
solution of (107) is the evaluation of 

(109) R =-(-N)kl and N -(-N)2k+l(modp). 

They satisfy 

(110) Ro -NN0. 

If it happens that No- 1 (mod p), the algorithm terminates (abruptly) and Ro is 
obviously the required solution. If No - 1, the algorithm selects the smallest z for 
which (z/p) = -1, computes 

( 111 ) co (Z)2k+, 

and now enters its main routine. This utilizes the cyclic group of residues prime to p 
(mod p). It is only in this main routine that the primality of p is involved via this 
cyclic group of order p - 1. 

What happened above is that 

C1 = 23(880656015) + 1 

gives us 

No-1 and therefore Ro-(-23) =R. 

This R is an authentic -23 for the modulus C1 -that is, it is one of the eight. Then, 
this R gives us one representation via the form (108), and the lack of primality of C, 
did not enter at all. 

Surprisingly, the same thing (No 1) happens with C2, and we obtain 

C2 = 702432 + 23* 100982, 

one of the four representations. (Find the other three if you are interested.) Also, it 
happens with C6, and we obtain 

C6 = 126892 + 11 _ 123302. 

The other three, even if you are not interested, are 

275052 + 11 - 98942 = 348652 + 11 * 74942 = 417612 + 11 - 28502. 
But with C3 we have event (1) instead: breakdown! Here 

No(-31)(C3 1)/8 -10263692081 (mod C3), 
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and now the main routine is engaged. Then z = 11 is the first solution of (z/C3) I- 

and (111) is evaluated: 

(112) co=-2867119581 (mod C3). 

The algorithm then gets into an infinite loop, essentially because c2 1 (mod C3). 

Obviously, that could not happen if C3 were prime since then I could only be 1. 
We say C3 is not an Euler 1 1-pseudoprime and is not a strong I I-psp (pseudoprime). 
We may note that C3 is also not a strong (-3l)-psp although this time it is an Euler 
(-3 l)-psp. (See [7], [ 1] for these definitions.) Any of these three failures implies that 
C3 is composite, but the actual breakdown here was caused by z. 

If n has an S signature and z is the smallest solution of (z/n) -1, a test whether 
n is a strong z-psp will be called the z-test. 

In Cl, C2, and C6 we had No 1 above, and we did obtain a representation. 
However, in all six Cl < 25 109, Cl fails its z-test: it is not a strong z-psp, and 
therefore it cannot be prime. (We did not test the large C7, C8, Cg. They were 
computed much later.) 

In the Owings composites, 01 and 02, we again had No -1 and obtained one of 
the two representations: 

01 = 44382 + 23 10832, 02 = 170722 + 23 54332 

But again 01 and 02 failed the z-test, for example, for 02, z = 3 and 

(113) 3(02-1)/2 _ 88107, 302-1 1 (mod 02). 

Likewise, all five T, fail their z-test, so that all of these S composites: Cl, C2, C3, 

C4, C5, C6, 01, 02, T1, IT2, T3, T4, T5 can be shown to be composite merely with the 
relatively simple z-test, and without even becoming involved in the algorithm for 
(106). 

Nonetheless, there are two convincing reasons why the z-test will not work on 
every S composite. In the first place, if No -1, and this occurs frequently, (1 11) is 
not computed, and z has no real functional relevance to the situation. Secondly, the 
choice of the smallest solution of (z/n) = -1 is merely one of convenience: there is 
no known correlation between the size of z and whether a composite n is, or is not, a 
strong z-psp. Since it is not possible to rebut these arguments, the easiest way of 
settling the question is to find a counterexample. We therefore computed the 
additional O, in (89) and (90). 

With these eight new S-composites, we obtained these results: First, 03, 06' 07, 
and ?8 also fail their z-tests, as before. But 

(114) 04 = 24379 48757 = 1188646903 

is the counterexample, and so we record the details. 

No (11)(O41)/2 _ 1, and therefore R0 346290683 V-1 

gives us one (of the two) representations 

04 = 151822 + 11 - 93332. 

So z = 3 was never used but 

3(04-1)/2 = _1 (mod 04), 
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and 04 is a strong 3-psp. Thus, 04 has an S signature, passes the Jacobi symbol test, 
has an authentic -11 and representation, and passes its z-test. 

Of course, 04 is not prime. Its "next" z after 3 is 5 and 
504-1 -97515 (mod 04), 

and so 04 is not even a 5-psp, let alone a strong 5-psp. Or again, the other 
representation 

04 = 65982 + 11* 102032 

also proves 04 to be composite. 
The large 010 (see (90)) is just like 04 in these respects: No 1, z = 3, and 

3(010-)2 = -1. It also passes the z-test. 
The remaining two Oi, namely 05 and 09, also pass the z-test, both with z = 2, but 

they are not as deceptive as 04 and 010 were. Both 05 and 09 have No z 1, and in 
both cases the algorithm for (107) gets into an infinite loop, not because of the c0 in 
(111), but because these Oi are not strong or even Euler (-N)-psp for N 11 and 
23, respectively. Thus, no v-N or representations are obtained, and if this algorithm 
(107) were computed besides the z-test, we would know that 05 and 09 are also 
composite. 

However one rates the last two cases, 0 and 09, 04 and 010 definitely pass all 
tests in this section, and we now turn to another test for n having S signatures. 

10. A Test Passed By. The I signature gives us Vd; the S signature does not. The 
Q signature gives us one root of the cubic; the S signature does not. Actually, in 
most cases, this latter information did appear but it was allowed to go by unre- 
corded. Suppose p = 25(2k + 1) + 1 is an odd S prime. Its signature was obtained 
from that of (2k + 1) by doubling this argument (s - 1) times, and then by 
2((p - 1)/2) + 1 as a final step. Previously, these earlier signatures (and they had 
the information) were written over and destroyed. Let us examine them for five S 
primes in Perrin. Instead of listing the final signature for p, we list that of (p - 1) 
instead. It has a notable repetition: 

(115) A(-I), 3, A(1), A(-I), 3, A(1). 

n Signature of n (mod p) p 

29 31, -1, 8, 31, -1, 8 59 
58 -1, 3, 0, -1, 3, 0 59 
25 66, 80, 79, 45, 19, 83 101 
50 92, -1, 40, 92, -1, 40 101 

100 -1, 3, 0, -1, 3, 0 101 
43 12, 1, 141, 49, 1, 137 173 
86 62, -1, 105, 62, -1, 105 173 

172 -1, 3, 0, -1, 3, 0 173 
2415 9481, -1, 1708, 9481, - 1, 1708 9661 
4830 -1, 3, 0, -1, 3, 0 9661 
9660 -1, 3, 0, -1, 3, 0 9661 

11013 -1, 3, 0, -1, 3, 0 22027 
22026 -1, 3, 0, -1, 3, 0 22027 
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For 59, 101 and 173, the period W does not divide (p - 1)/2, and the signature 
of (p- 1)/2 is of the form 

(116) e, -1, f, e, -1, f. 
Here, - 1, like the 3 found below it, is one of the two roots of 

(117) x2-2x_3=A(O) (mod p), 

and we will presently analyze the specific information in e and f. 
The period of 9661 (which divides 01) divides (p - 1)/2 but not (p - 1)/4. Its 

characteristic signature (116) comes one inning earlier. The period of 22027 (which 
divides 02) is odd and no signature (116) occurs. This S prime is uninformative in 
this respect. (Information of another type is found at (p - 1)/3.) 

Since (116) gives (115) by the Doubling Rule, we have 

(118) f2 - 2e A(2), e - 2-fA(-2), 

in addition to the (117) satisfied by x = - 1. Therefore, we have 

(119) f4 - 2A(2)f 2 -8f +-A2(2) - 4A(-2) -0, 

(120) e- 2A(-2)e2 -8e + A2(-2) - 4A(2) -0. 

Now write 

(121) f = 2g-A(1) 
in (119), and its left side becomes 

(122) 16(g - A(1))(g3 - A(I)g2 + A(-1)g - 1), 
so the four roots of (119) are 

(123) fo=A(1) and fj=2g1-A(1) (i= 1,2,3), 
where the g, are the three roots of 

x3-A(1)x2 + A(-1)x-1 0 (mod p). 

Conversely, 

(124) g f +A(I) 
2 

gives us one root from thef in (116). 
Interchange of A(1) and A(- 1) gives us the four roots of (120): 

(125) e A =A(-1) and e, 2--A(-1) (i = 1,2,3). 

Therefore, 

2 

(126) gl e + A(-1) 
from the e in (116). But this is the same root in (124) since, from (118), we have 

f+ A(1) - e-A(-1) 2 
2 f-A(1) e + A(-1) 

Unlike the paradox about T. Jefferson in Section 9, it is easy enough to 
characterize the root of the cubic singled out by g1. Since g1 g2 g3 = 1, either they are 
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all quadratic residues of p, (as occurs above in 9661 and 22027), or exactly one is (as 
in 59, 101 and 173). It is easy to prove that in this case g, is the quadratic residue. In 
fact, the 3 and the -1 both arise as 

(p ) (p ) (p ) 

and the proof relates to the evaluation of that sum. 
Let us pursue the characterization of g, back one more inning. In 9661, g1, g2, and 
are all quadratic residues, but g -4(1708) is the only quartic residue among the 

three. In 173, the 1 standing above -1 is the only solution of x2 - 2x ---1, and it 
occurs if, and only if, g, is a quartic residue of p. In 101, where g1 -20 is a 
quadratic but not a quartic residue, one finds -1 + 2i and -1 - 2i standing above 
-1 instead. Therefore, ? i ? 10 (mod 101). We will use this characterization 
presently. 

Therefore, unless the S prime has an odd period, as p = 22027 does, we easily 
obtain one root g, and perhaps some other information from these penultimate 
signatures. 

Now consider C1 instead of an S prime. We find these signatures (mod C1) 

at(Cl-1)/4 X, Y, Z, X, Y, Z 
at(Cl - 1)/2 -1, 3, 0, -1, 3, 0, 
at(Cl - 1) -1, 3, 0, -1, 3, 0, 

where 

X= 5208849706, Y 5157361904 and Z= 246283384. 
Now Y is a solution of 

x- 2x 3 (mod C1) 

but is not congruent to -1 or 3 (mod C1). Therefore, C1 is composite, since a prime 
can only have those two roots. What is happening here is due to 

Y -I (mod 821), Y 3 (mod 1231), Y 3 (mod6971), 

where these are the three primes dividing C1. But 821 attains 3 one inning after 1231 
and 6971 are already at this fixed point. This "misalignment" gives us a Y X -1, 3 
(mod Cl) and it proves Cl to be composite. 

In a Carmichael solution such a misalignment is quite probable since there are at 
least three prime factors. In fact, the same test works on C2 through C6. (We did not 
try the larger C7 - C9.) For the record, the corresponding values of Y (mod C ) zi -1 
or 3 are: 

at (C2 - 1)/4, Y 434194322, 
at (C3 - 1)/4, Y 4640837320, 
at (C4- 1)/4, Y 6135985282, 
at (C5 - 1)/8, Y _ 17046671936, 
at (C6 - 1)/4, Y- 1454557351. 

We have no assurance that thiE easy test will work on all C,. That seems very 
anlikely. 
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The test may or may not work on the ;, which have only two factors instead of 
three or more. We find that T, and Ts, like the Ci, have a Y z5 -1 or 3 and are 
exposed as composites. But T2, T3, and T4 pass the test and T2 and T4 actually give us 
a valid root g1 of the cubic, while T3, like p = 22027 in the table, is uninformative. 

The Oi are quite likely to pass the test (unlike the C1) since they have only two 
factors, and they tend to be aligned because of the condition (85) that 2p - 1 must 
satisfy. In fact, 01 ?2, 03, 06' 08' and 09 all pass the test (i.e., are not exposed as 
composites), while 07 fails (Y z2 -1 or 3). 

The remaining three we list for special mention: 

z-test Test Passed By 

010 passed failed 
05 l passed l failed 
04 passed passed 

?00 which, unlike most 0, passed the z-test, now, unlike most 0, gets caught by 
the new test. It is the most contrary of our examples. 

05, which passed its z-test, but failed to obtain a -11 or a representation 
05 = u2 + 1 1v2, is equally complicated in the new test. Consider its signatures: 

at(05-1)/4 Xi Y, Zi X2 Y2 Z2 

at(05-1)/2 e -1 f e -1 f 
at(05-1) -1 3 1 -1 3 1 

with 

e= 1831432868, f = 746855451, 

Y, = 1368191032, Y2 = 689901363. 

It appears to pass at (0O - 1)/2. The -1 there shows that its two factors 32077 and 
64153 are not misaligned. And f gives us an authentic root g, = 373427726. But 
Y1 + Y2 256614 2 +2 or -2 (mod 05). If 05 were prime, we would have +2 for 
this sum, if, like 173 in the table, g, were a quartic residue, and we would have -2, if, 
like 101 in the table, g1 is not a quartic residue. Therefore 05 is composite; its two 
factors are not misaligned, they are aligned, but each is in his own space and doing 
his own thing. It is true that g, is a root and a square (mod 05). In fact, it has four 
square roots: 

g _+4-297803208, +4341427248. 

05 is the most subtle and complex of our examples. 
04, which was the first to pass the z-test, obtained a -11 and a representation, 

now also passes the new test and obtains an authentic root, g_ 818715002, of its 
cubic. 04 is the most deceptive of our examples. 

It is a tribute to the strength of our A(n) that the rareness of their acceptable 
composites allows us to attribute individual personalities to these composites; no one 
ever thought of assigning personalities to Wagstaff's 21853 2-pseudoprimes. 

The test in this section is very similar to that of a strong psp. Our extra roots 
Y 2 -1 or 3 are entirely analogous to the 88107 -T that we saw in (113). 
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11. The S Signatures. If we confine the factors of a composite to S primes, we 
obtain a full panoply of pseudoprime-like acceptable S-composites, including 
Carmichaels and analogs of strong-psp. A big advantage of our A(n) is that the 
number of such composites is much reduced because the density of S primes is only 
1/6. But within this reduced population these composites behave just like psp. Tests, 
such as those in Sections 9 and 10, expose most of them as composites, but some get 
through. We saw that 04 in (89) passes both of these tests. 

One can easily eliminate all (of the many) Oi: Upon obtaining an S signature for 
n, determine if 8n + 1 is a perfect square. If 

8n + I = (4k +- 1)2 (k > 1), 

then n = k(2k ? 1) is obviously composite. 
But it is unlikely that even all three tests, taken together, could catch all 

S-composites. This is our recommendation for n that have S signatures. There are 
three cases: 

(A) We have some a priori reason to believe that n is composite. 
(B1) We have no such reason but n is, in fact, composite. 
(B2) We have no such reason and n is, in fact, prime. 
If we are in (A), it certainly does no harm to use any, or all, of these three tests 

and n will probably be exposed. If we are in (B) (the usual case), we really do not 
recommend the use of the tests in Sections 9 and 10 since they are always 
inconclusive if we are in (B2). If the intent is to use some strong test to delete most 
of the composites, then our recommendation is to switch to another of our A(n). 
After all, that is the claim in our title: These are very strong tests. 

This is what we can expect. In (B1), with a very high probability, the new 
signature will not even be slightly acceptable. For example, 04, that is so deceptive 
in the -44 A(n), has this signature 

27603213, 770199562, 272340289, 272340289, 763623965, 574664267 

in Perrin. With a small probability in (B1), we may find another S-signature in this 
second A(n). In that case, try a third A(n). 

If we are in (B2), with a probability of 5/6 we will obtain an I or Q signature in 
the second A(n). Of course, this brings us back to our unresolved main question 
Section 8(D). Pending a solution of this question we can only say that, with a high 
probability, n is prime. In the 1/6 of the cases where we get another S signature, try 
a third A(n). 

12. Theory. Setting Up a General Cubic Recurrence. In this and the following 
sections we will prove and generalize the results stated in the previous sections. 
Although some of these results occur in the literature, we include their proofs here 
both for ease of reading and because they cost little extra effort. 

For simplicity we restrict ourselves to cubic recurrences of integers whose reverse 
sequence consists of integers also. That is, let r, s be integers (in Z) and consider the 
recurrence 

(127) A(n + 3) = rA(n + 2) - sA(n + 1) + A(n). 
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This paper is concerned only with the special recurrence defined by the initial 
conditions: 

(128) A(-1) = s, A(0) = 3, A(1) r. 

Consider the associated characteristic polynomial for (127) 

(129) f(X) =X3-rX2+SX-.1 

(When more than one sequence is being considered we will denote A(n) by Af (n) if 
necessary.) Let f(X) = (X - a)(X - 13)(X - y) for the appropriate complex num- 
bers a, /3, y, and let d= df = [(a - 13)(13 - y)(y - a)]2 denote the discriminant of 
f. Let K = Q(a, /B, y) = Q(a, Vd) denote the splitting field of f over the rational 
numbers Q. Let IK denote its ring of integers. We note that since we have made no 
assumption on the character of the roots of f other than those implied by its form 
(129), we see that our theory contains the theory for certain second-order recur- 
rences. 

From the theory of linear recurrences it is known that A(n) is a linear combina- 
tion of an, /n, yyn. Then, from the initial conditions (128), we see that we are dealing 
with the special case 

(130) A(n) = an + /n + yyn. 

We first make the trivial observation that Af(-n)= Ag(n), where g is the 
reciprocal polynomial for f: 

g(X) = X3 - SX2 + rX- 1. 

Thus the results proved for n > 0 hold, properly interpreted, for n < 0 as well. More 
generally set, for any integer m, 

(131) fm(X) = (X- am)(X - /m)(X - m) 

= X3 -Af(m)X2 + AfA(-m)X- 1. 

We see that for all integers n, 

Af (mn) = Af1(n). 

Thus again, with proper interpretation, results we prove for all A(n) hold equally 
well for A(mn); the special case m = -1 was given above. 

For example, let p be any prime. Then, working mod pIK and using Fermat's 
Little Theorem, we have 

A( 1 ) _ A(I1 )P = ( a + jB + -Y)p =iP!j!k! alI3Jyk 
1+j+k=p Jk 

ij,j ,kO0 

-aP + /PP + yP =A(p) (mod pIK), 

sincep I p!/i!j!k! unless one of i, j, k = p. Thus A(p) A(1) (mod p) (as integers). 
Invoking the remark above we obtain the important congruence (71): for all integers 
m 

(132) A(mp) A(m) (mod p). 

With m 4- 1, this was the starting point for our signatures in Section 1. 
It follows, for example, from (132) that if n is a square free integer, then 

A(n) A(1) (mod n) if, and only if, for all primes p I n, A(n/p) _ A(1) (mod p). 
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13. General Signatures. In this section we gather together all of the general 
material on signatures needed to prove the results stated above about the signatures 
of primes and also to construct examples of composites having prescribed signatures. 
We recall that the sequence of six numbers A(-n - 1), A(-n), A(-n + 1), A(n - 1), 
A(n), A(n + 1) read mod m is defined to be the signature of n mod m. 

Definition 1. (i) We say that n has an S signature mod m provided the signature of n 
mod m is 

A(-2), A(-1), A(O), A(O), A(1), A(2), 

that is: 
(133) - 2r, s, 3, 3, r, r 2- 2s. 

(ii) We say that n has a Q signature mod m provided the signature of n mod m is 

(134) A, s, B, B, r, C, 

where for some integer a satisfying f(a) 0 (mod m) we have 

(135) A _ a2 + 2a, B---ra2 +(r2-s)a, C-a2 + 2a-1 (mod m). 

(iii) We say that n has an I signature mod m provided the signature of n mod m is 

(136) r, s, D', D, r, s, 

where 

(137) D'-+D=rs-3, (D'-D) d (mod m). 

We note that for technical reasons there are slight differences between the 
definitions given in Sections 1, 3 and the equivalent ones given here. First,we have 
not now included the restrictions that D 2 D' (mod m) and B 2 3 (mod m) as they 
follow from (137) and (135), respectively (see Proposition 5). Second, we note that 
(137) immediately gives 

(138) D2 (rs-3)D (rs 3) _d 0(modm) 4 

which is the relation (13a), (36) or (60) for d = -23, -31, -44, respectively. Finally, 
in the definition of a Q signature, it is more convenient in the theory to use the 
relations (42), as we already stated in Section 3. For completeness, we record the 
general relations in a Q signature corresponding to (14), (37), and (56): 

(138a) B3 - rsB2 + (r3 + s3- 3rs)B + (r3 + s3- r2s2) 0 (mod m), 

(- r3)A (S2- 3r)B2 + s(4r2 -s2r - 3s)B 

+ (s5 - 3s3r + 6sr2 - 2r4) (mod m), 

and the formula for C is obtained from that for A by interchanging r and s. These 
relations immediately give the convenient linear relation 

(r2 - 3s)A + (rs - 9)B + (2- 3r)C r2s2 - 3rs - r3-s3 (mod m). 

We begin the derivations with the following lemma: 

LEMMA 2. Let mi, n be integers such that gcd(m, 2d) = 1. Let W be an ideal of K 
such that % nz = mZ (e.g. C = mIK). Then A(n - 1), A(n), A(n + 1) mod m has 
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one of the following shapes: 

A(n-1) A(n) A(n + 1) 

S 3 r r2-2s 

(139) Q B r C where B -ra2 + (r2 - s)a, 
C-a2 + 2a-1 (mod %) 

I D r s where D-K(rs-3-8) (mod W), 
3 = (a - /)(3 - Y)(Y - a) 

for rational integers B, C, D if and only if the following conditions hold, respectively, 

[S an-a fn_=l, yn y(mod )), 

(140) Q al-O a, _ =y yn _ (mod W), 

L a< _ 7A , yn _=a (mod %). 

Proof. Let 

A=[ 1 $ 1], a p 'Y 

VS=|,B| VQ = |Y I V=|Y| Vn F n 

and UT (for T S, Q, I) be the column vector of the appropriate row of (139) read 
backwards. Then, since 32 d and so det A = 8 is a unit mod t, we have AVn = AVT 
(mod %) if, and only if, Vn VT (mod %) (T = S, Q, I). Moreover, n z = mZ 
implies AVn=_ AVT (mod %) if, and only if, AVn = AVT (mod m). Thus, in order to 
prove the lemma, it suffices to show that AVT = UT (T = S, Q, I). For T = S, this 
is immediate. Moreover, the middle entry of AVT for any T is a + ,B + y = r. So it 
remains to verify the first and third entry when T= Q, I. The first entry of AVQ is 
a2+ 2fly = oa2 + 2a-1; the third is 1 + yp-l + /-y-1 = I + a( 32 + y2) = 1 + 

a(A(2) - a2) = -ra 2 + (r2 - s)a since al3 ra 2 - sa + 1. The first entry of AV, is 
af3 + fly + ya = y-1 + a-' + 3-1 = A(-1) s. Finally, the third entry DI of A1V, is 
D #a-' + -y-l + a-y-1 = #2y + y22 a+ a23. Set D' = a/-' + y-' + ya1 
a2y + af32 + #y2. We see that 

D' + D = a(#2 + y2) + 3(a2 + y2) + y(a2 + /2) 

= -A(3) + A(1)A(2) = rs - 3, 

and 

D-D (a-/)(3-y)(y - a) = 3. 

Solving these equations gives the desired result D = (rs-3-8). D 

THEOREM 3. Let mn, n be integers such that gcd(m, 2d) = 1. Then 
(i) n has an S signature mod m if, and only if, 
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(ii) n has a Q signature mod m if, and only if, for all prime ideals a of K such that 
m (write v = ord $ m) we have one of the three congruences 

{an 

= 

a0 

n 
=- yn = 

i 

(mod 

3), 
(142) a =a (mod ), 

l n = 
7 an = /g fln 

= a (mod ) 

(iii) n has an I signature mod m if, and only if, for all prime ideals a of K such that 
m (write v = ord m) we have either 

(143) Of n/ n_y -a (mod ^ 

or 

(144) Of = _ 7 =n = /,S a (mod $P). 

The complications in the statements of the criterion for Q and I signatures will be 
discussed following the proof of Theorem 6. 

Proof. Applying Lemma 2 both to the original sequence and to the reverse 
sequence (interchanging r and s), we immediately obtain the result for the S 
signature. 

We now prove (ii). First assume n has a Q signature mod m. We have 

O--f(a) = (a - a)(a -,1)(a --y) (mod $P). 

Since gcd(m, 2 d) = 1, we see $3 may only divide one factor, say the first. Hence 
a _ a (mod 3 ). Substituting a for a in the congruences (135), we obtain con- 
gruences mod W =3 which from Lemma 2 yields the first alternative in (142). Of 
course, /3 a (mod $3) or y a (mod $3) yield the other two possibilities in (142). 
Conversely, assume one of the possibilities in (142) holds, say the first, for some 
prime ideal 3 of K, $3 m. Applying Lemma 2 with W = $3, we obtain the relations 
in (139Q). We also have the condition (140Q) with a, /3, y replaced by a-', /-1, y-, 
respectively, and so we obtain (139Q) with n replaced by -n and a by a-'. Looking 
at the proof of Lemma 2, we see B =1 + 3y'- + /3-'y which is symmetric in 
replacing a, /3, y by a-l, /3-', y-, and so A(-n + 1) _ A(n - 1) (mod 3 ). We now 
see we have obtained (135), with a replacing a, and $3 replacing m. Using these 
congruences, we solve for a mod 3P. We have 

B (r2 -s)a - ra2 (mod 3P), 

C 2a-1 + a2 (mod $)P 

s-oa1 + ra-a2 (mod P), 

and so (r2 - 3s)a 3B - 2rs + rC (mod 3P). Since B A(-n + 1) (mod 3P), we 
also have 

B (S2 - r)a' - sa-2 (mod $P) 

A 2a + a-2 (mod ), 

r a + sa-1-a2 (mod P), 
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and so (s 2- 3r)a = -sB - rA + r(s2 - r) (mod $3). One or the other of these 
congruences may be solved for a to obtain a a (mod 3 ) for a rational integer aS, 
provided r3 r2 - 3s or t S2 - 3r. In case M I r2 - 3s and I1 2 - 3r we have, for 
the prime rational integer p such that pZ = I n z, that either r s -0 or 3 
(mod p) or for p -1 (mod 3) and h a primitive cube root of 1 mod p we have 
r 3h, s 3h2 (mod p) or r 3h2, s 3h (mod p). It is immediately verified that 
the last three cases violate the hypothesis that p I d (i.e. gcd(2d, m) = 1). In the first 
case we have f(X) = - 1 (mod p), and so f(l) 0 (mod p) and p #? 3 (or else 
p I d). We easily see then that there is a rational integer b such that f(b) 0 
(mod p'), and, as above, we see either a -b or / _ b or -y b (mod $ 3). Since the 
first alternative in (142) holds, we see in all three cases there is a rational integer a, 
so that a _ aW, (mod $). We have now established that the relation (135) holds 
with a replaced by a, and m replaced by $P for all V j m. Since the congruence 
involves only rational integers, we see (135) holds with a replaced by an integer ap 
and m by p" for all p I m (i = ordpm). Finally,by the Chinese Remainder Theorem 
we obtain (135) itself. 

Finally we prove (iii). First, assume n has an I signature mod m. Let 3, v be as in 
the statement of the theorem. From (137), 82 = d and $PI| m we see that 

PIl (D' - D - 8)(D' - D + 8). 

Since gcd(m,2d) =1 implies gcd($, 28) = 1, we have $3"I D' - D - 8 or $3Vj D' 
- D + 8. It now follows immediately from Lemma 2 (with W = $13) and D' + D _ 
rs - 3 (mod $3) of (137) that (143) holds in the first alternative and (144) holds in 
the second alternative. Conversely,assume (143) or (144) holds (in fact assume (143) 
holds-the other case being similar). Then from Lemma 2 with W 4 1 we have 
(139I), where A(n - 1), A(n), A(n + 1) are read mod 43 (or mod 43 n Z). Now 
(143) certainly implies 

-n -1 ?n-l y-n_ ,-(md ) 

and so, applying Lemma 2 to the reverse sequence (which simply interchanges r and 
s), we see 

A(-n-- 1) _r, A(-n)--s, A(-n + 1) D' (mod $), 

where 

D' -(rs - 3 - 8') (mod 43) and 8' = (a-' _3')(/3' - y-)(y_ - 

But at/3y =1 implies 8' = -8. We now solve the equations for D and D' to obtain 
(137) mod 43. These equations do not depend on the choice (143) or (144) and thus 
hold for all prime ideals $ 4 m. They then hold mod mIK and so also mod m since 
mIKn z - mZ. 10 

We note that Lemma 2 and Theorem 3 say that the left half of the signature adds 
no new information. It is nevertheless important and convenient since it is automati- 
cally computed in the algorithm given in Section 5 and it makes the signature easier 
to recognize. That is, in the Q signature the two middle terms are the same, and in 
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the I signature the sum and difference of the two middle terms are easily recogniz- 
able. A propos of this point we have from the proof of Theorem 3: 

COROLLARY 4. Assume that gcd(2d, m) = gcd(r, s, m) = 1 and n has a Q signature 
mod m. Then the special rational integer root a in (135) may be obtained from the 
congruences 

(145) {(r2 - 3s)a = 3B-2rs + rC (modm), 

(S2 3r)a = -sB -rA + r(S2 r) (mod m). 

Finally,we prove that S, Q, and I signatures cannot be confused. More precisely: 

PROPOSITION 5. Assume that n, m are integers such that gcd(2d, m) = 1. If n has a 
Q signature mod m, then 

(146) B 2 3 (rnod m). 

If n has an I signature mod m, then 

(147) D 2 D' (mod m). 

Proof. Of course (147) is trivial since from (137) we have (D'-D)2 d (mod m). 
To prove (146) we assume, to the contrary, that B _ 3 (mod m) and obtain from 
(138a) that 

r 2s2 + 18rs - 4(r3 + s3) - 27 0_ (mod m). 

But the left side is the discriminant d of (129), and therefore gcd(2d, m) > 1 if 
m > 1. 0 

14. The Signature of a Prime. In this section we apply the theory of the previous 
section to show that all primes have either an S, Q, or I signature. We recall that for 
any integer n, the signature of n mod n is called the signature of n. 

Let p be a prime integer. We recall from Section 2 that p is called an S prime if 
f(X) = X3-rX2 + SX - 1 splits into three linear factors mod p. It is called a Q 
prime if f( X) splits into the product of a linear and irreducible quadratic polynomial 
mod p. Finally, it is called an I prime provided f(X) is irreducible mod p. 

THEOREM 6. Assume p is a prime integer such that p t 2d. Then p is an S, Q, I prime 
respectively if, and only if, p has an S, Q, I signature, respectively. 

Proof. Recall that K = Q(a, /3, y) is the splitting field of f(X). Set F = Q(a). If 
f(X) is reducible over Q, the result is deducible in precisely the same way as given 
below (with K= F a quadratic extension of Q); we therefore assume f(X) is 
irreducible over Q. Then p is an S, Q, I prime mod p if, and only if, p splits in F as 

S: product of three degree 1 primes, 
Q: product of one degree 1 and one degree 2 prime, 
I: p remains prime and has degree 3. 
(p is unramified since we assumed p t d.) 
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Assume that in K, p splits into a product of g primes of degree f. Then the above 
statement is equivalent to 

S:f= and {g36 if K-F, 

Q: f 2 and g 3 (hereK Fisimpossible), 

I: f 3 and {g 
2 

if K-F- 

Now assume p is an S, Q, I prime, respectively, and $ is a prime of K lying over 
p. Then IK/I is a cyclic Galois extension of Z/pZ of degree f with generator of the 
Galois group given by p - pP (mod ). If p is an S prime, p F- pP (mod $) is the 
identity map, and we see that aP- a, 3P = 3, yP -y (mod ). If p is a Q prime, 
then one root of f(X), say a, has the property that a -a (mod a ) with a E Z, and 

,/ generates the quadratic IK/I over Z/pZ; thus aP- a (mod ), fP _ y (mod $) 
(,8P is a conjugate of /3 mod 3) and yP /3 (mod $3). If p is an I prime, then aP is 
another root, say /3, so aP /3 (mod $4), and al is another root ( - 3) so al' y 
(mod $T); thus alP /3, 3P -y, yP 

- a (mod $). Then by Theorem 3 we see easily 
that p has the desired signature. 

Conversely, assuming p has an S, Q, or I signature, we see by Theorem 3 that for 
all prime ideals a lying over p in K the congruences of Theorem 3 hold. This implies 
degree a = 1, 2, or 3, respectively, and a is of the desired type. LI 

Suppose K has degree 6 over Q. Then the Galois group of K/Q is S3, and in 
particular a defined by a H- /3, /3 F a, y F-* y is in the Galois group of K/Q. Let $ 
be a prime ideal lying over the I prime p. Then by Theorem 6 we may assume the 
congruences (143) hold with n = p. Now a$ is the other prime lying over p. 
Applying a to the congruences (143), we see we obtain the congruences (144) 
mod a$. Thus neither (143) nor (144) hold mod the ideal pIK. This accounts for the 
necessity of including the two alternatives in the statement of Theorem 3 for I 

signatures. A similar comment, of course, applies for Q signatures. 

15. The Period of the Recurrence. Since there are only a finite number of possible 
triples (A(n - 1), A(n), A(n + 1)) mod m, for some fixed integer m, the sequence 
A(n) must be periodic mod m. We recall the notation that W= W(m) denotes the 
period of A(n) mod m. 

THEOREM 7. Let m be any integer such that gcd(m, 2d) = 1. Then W(m) is the least 
integer w such that 

(148) a'w- yw=yw l (mod mIK). 

For any such w in (148) we have W(m) I w. Finally we have 

[W(m) I n- 1 if n has an S signature mod m, 

(149) rnW(m) I n -1 if n has a Q signature mod m, 

lW(m) In2 + n + 1 if n has an Isignature mod m. 

Proof. Since A(k) satisfies the recurrence (127) for all integers k, both positive and 
negative, the sequence must be pure periodic. Thus we see that W(m) may be 
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characterized as the least integer w such that w + 1 has an S signature mod m. The 
first assertion now follows from Theorem 3. The second assertion is proved as usual, 
and it remains to prove (149). We apply Theorem 3. If n has an S signature mod m, 
then (141) implies an l = yn-I=1 (mod mIK) and so W(m) I n - 1. If n 
has a Q signature mod m, then assuming, for example, the first alternative in (142) 
wehave an 1 (mod a ) sofl2l a 1 (mod $W) and /n21 =-yn3-l -1 1 
(mod 4I V) and similarly -y 1 (mod l4 v). Since this holds for all prime ideals 
$ m it holds mod mIK and so W(m) I n 2- 1. If n has an I signature mod m, then 
from (143) or (144) we have 

an2+n+1 n2 fn2+a1 y/ =-1(mod v) 

and similarly yI2'+ /3n2+n+_ 1 (mod $'). This holds for all prime ideals 

$I m and so hold mod mIK. Thus W(m) I n2 + n + 1. El 

COROLLARY 8. Let p be a prime such that p t 2d. Then 

[W(p) I p -1 ifp is an S prime, 

(150) W(p) I P2 -1 ifp is a Q prime, 

W(p) p2 +p + 1 ifpisanIprime. 

The period may be identified in terms of the roots of f( X). For this purpose we 
denote, for any prime integer p and any p in IK prime to p, ordp p the multiplicative 
order of p in IK/PIK- 

COROLLARY 9. Let p be a prime integer such that p 1 2d. Then 
(i) W( p) = lcm(ord a, ordp /3, ordpy) if p is an S prime. 
(ii) W(p) = ordpp = ordpy if p is a Q prime and a corresponds to the rational root 

of f(X). 
(iii) W(p) = ord a = ordp B = ordpy if p is an I prime. 

Proof. From Theorem 7 we always have 

W( p) = lcm(ordpa, ordp 13, ordpy). 

If p is a Q prime, we have from Corollary 8 that ordp, 3 ordpy I p2 - 1; then, since 
8P -~y (mod PIK) (from Theorem 3), we see that ordp = ordpy. Moreover 

aordpf3 = (/3y) ordPf _ 1 (mod pIK), 

and (ii) is established. Finally if p is an I prime, then Corollary 8 implies ordpa, 
ordpj/, ordpy I p2 + p + 1. It is then easily deduced from Theorem 3 that ordpa =- 
ordpf = ordcpy. E 

We now prove the result that was used in the sieving in Section 4; i.e., Eq. (76): 

PROPOSITION 10. Let p be an I or Q prime such that p t 2d. Let n be an integer such 
that p j n. Then 

(151) A(n)=-A(l) and A(-n)=-A(-1)(modp) 
holds if, and only if, 

(152) n -pi (mod pW(p)). 

Herej - 1 or 2 if p is a Q prime, andj = 1,2,3 if p is an I prime. 
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Proof. That (152) implies (151) follows immediately from (132) and the definition 
of W( p). Conversely assume ( 15 1). Write n = mp. From ( 132) we have A (m) A (1) 
and A(-m) A(-1) (mod p). From this and (131) we see that as polynomials 

(153) (X-am)(X-Im)(X-ymr)=(X-a)(X-,B)(X-y)(modpIK). 

Let 4 be any prime of K lying over p. Then (153) holds mod 4 as well. Since 'K/ 

is a field, we see that a, ,B, y is some permutation of am, m M r mod . 

We first consider the case where p is an I prime. Say 

(154) aP"-/, /3PPy, yP a (mod ) 

Since atm a, /B or y (mod 43), we obtain 

a _a or arnmaP or am aP2 (mod ), 
so that 

(155) a r-I _ or amr-p _ or amrp _1(mod 4). 

Then (154) implies that whichever alternative holds for a in (155) holds equally well 
for /3 and y. From Theorem 7 we see that 

W(p)lm-1 or W(p)lm-p or W(p)Im-p2, 

as desired. 
Now assume p is a Q prime and a is the rational root of f(X) mod p. Thus 

a a, ,PP-y, yP-f (mod 43) 

Again arm _ a, /B or y (mod 43). But armn/3 (mod 43) implies 

3 =am apra _ /P -y (mod s), 

which contradicts the assumption that p d. Similarly arm E y (mod 4), and so 

arn a (mod 43). Hence f3tm /3 or ,B my--P (mod 43) or ,Brn-l 1 or / m 
1 (mod 43). Thus, also y m-i 1 or y m-P 1 (mod p4), respectively. Since we also 

have 

rn 1 - - 
a l= Oa-P (mod43), 

we see in fact that W(p)I m - 1 or W(p) mr-p. E 

We recall that Proposition 10 may be false when p is an S prime. In Section 4 we 

gave an example of an A(n) where the S prime 29 had m = 9 as an outsider. 

16. Constructing Composites with Interesting Signatures. We begin with the 

following observation. 

PROPOSITION 11. Let n be an integer such that gcd(n, 2d) = 1. Let p I n be a prime. 
Assume n has an S signature. If p is an S, Q, or I prime, respectively, then n p, p 

or p3 (mod p W(p)), respectively. Conversely, if n p (mod p W(p)), then p is an S 

prime; if n _p2 (mod pW(p)), then p is an S or Q prime; if n p3 (mod pW(p)), 
then p is an S or I prime. 

Proof. Since n has an S signature mod n, we see that n has an S signature mod p 

as well. Thus from Theorem 7 we see that W(p) n - 1. If p is an S prime, then 

W(p) I p-I (Corollary 8), and so W(p)I n-p = n-I- (p-1); since 
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gcd(p, p - 1) = 1, we see in fact that n p (mod pW(p)). Conversely assume 
n -p (mod pW(p)). Then W(p)I p - = n - 1- (n -p), and so aP-1 =/3PP 

yP- l1 (mod pIK), and so p is an S prime. 
If p is a Q prime, we have from Proposition 10 that n -p, p2 (mod pW(p)). If 

n p (mod p W( p)), we see that n has a Q signature mod p which cannot be, by 
Proposition 5 (since p has a Q signature mod p and A(?n + j) A(?p + j) 
(mod p)). Conversely if n -p2 (mod pW(p)), we see that W(p) I p2 -1. If p were 
an I prime, then W(p)I p2 +p + 1 and so W(p)13. If W(p) =3, then 3I p - 1 

(since 3 =gcd(p2 - I,p2 +p + 1)), and we have W(p)I p - 1 sop has an S 
signature, contradicting the assumption that p has an I signature. 

Finally, suppose p is an I prime. Then from Proposition 10 we have that n p, p2 
p3 (mod p W( p)). Let $ be a prime of K lying over p. Since p is an I prime, we may 
assume aP- /3, PP y, yP a (mod $). Then if n _p (mod pW(p)), we see 
aln /3, /31-y yn a (mod $), and n has an I signature mod $, which it does 
not. If n p2(mod p W(p)), then 

On -a -v2 _ -y(md ) 

and similarly y1 / /3 a (mod a ), and again n has an I signature, which it does 
not. Thus n _p3 (mod pW(p)). If n-p3 (mod pW(p)) and p has a Q signature, 
then W(p)I p2 - l and W(p)I n - 1 implies W(p)I p - = gcd(p2 - 1, P3 - 1), 
and so p is an S prime which is a contradiction. So we see p is an S or I prime. E 

COROLLARY 12. If n is a square free product of S primes, then n has an S signature 
if, and only if, for all primes p I n, n/p 1 (mod W(p)). 

Proof. If n has an S signature, then n/p 1 (mod W(p)) follows from Proposi- 
tion 1 1. Conversely, since p is an S prime, we see 

a1n = apnlp _a n lp a (mod pIK), 

and similarly /31 /3, yn -y (mod pIK). Thus n has an S signature mod p for all 

p I n. Since n is square free, we see n has an S signature. E 
All of the examples of composites with S signatures were examples of this 

phenomenon. For example, if n is a Carmichael number, then for all prime integers 

(156) pI n implies p-1 I n-1. 

If p is an S prime and pIn, then W(p) Ip - 1, and so n/p 1 (mod W(p)). So 
Carmichael numbers made up of S primes automatically yield composites with S 
signatures. Similarly the Oi of Section 7 were composites n = p(2p - 1) where p, 
2p- 1 were both S primes and W(2p - 1)1 p - 1. We see that these conditions 
simply insured that n/p 1 (mod W(2p - 1)) and n/(2p - 1) 1 (mod W(p)). 

Corresponding to Proposition 11 we have 

PROPOSITION 13. Let n be an integer such that gcd(n, 2d) = 1. Let p be a prime, 
p In. 

(i) If n has a Q signature, then p is an S or Q prime, and if p is a Q prime, then 
n _ p (mod pW(p)). 

(ii) If n has an I signature, then p is an S or I prime, and if p is an I prime, then 
- _ p, p2 n=p, p (mod p W(p)). 
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Proof. If n has a Q signature, there is a rational integer a such that f(a) 0 
(mod n), and so f(a) 0 (mod p). Thus p cannot be an I prime. Moreover if p is a 
Q prime, we have from Proposition 10, n p or p2 (mod pW(p)). If n_ 
(mod pW( p)), we see that p would have an S signature mod p contrary to our 
assumption. 

Similarly if n has an I signature, then (D' -D)2 d (mod n), and so (D' -D)2 

d (mod p), and we see that p cannot be a Q prime. Again we are done by 
Proposition 10 since n p3 (mod pW( p)) for an I prime p implies n has an S 
signature mod p. E 

If we do not restrict ourselves to a particular sequence (like Perrin), but instead 
allow any sequence, it is easy to construct composites made up of S primes with S or 
Q or I signatures. For example, let n be any Carmichael number. Then (156) holds 
for all primes p I n, and so for all integers a, b, c prime to n we have an- b-l 
cn- I--1 (mod n). Choose a, b, c so that abc 1 (mod n). Set 

(157) f(X)-(X-a)(X-b)(X-c) X3-rX2 sX-1(mod n). 

For the infinite class of irreducible cubic equations contained in (157) we have that n 
has an S signature and for each prime p I n, p is an S prime. 

Instead of considering (156) we could consider square free integers n such that for 
all primes p 

(158) pI n implies p-1 n2-1. 

Assume we have an integer b prime to n such that bn-I 1 (mod n) (so we are 
assuming (156) does not hold). Set c bn (mod n). Then c- bn b (mod n) 
(since bn 1 (mod p) for all primes p I n). Define a by abc 1 (mod n). Then 
an (bc)_ (bn)' = (cb)-1 a (mod n). Again define the recurrence by (157), 
and we see that we obtain a composite integer n with a Q signature such that for 
each prime p I n we have p as an S prime. Here, of course, (d/p) = 1 for all p I n, 
and so (d/n) = 1 as well, and we see n does not have an acceptable Q signature. An 
example of this phenomenon is given by n = 35 and is discussed in Section 8 (see 
(98), (99)). 

Instead of either (156) or (158) we may consider composites n such that for all 
primes p 
(159) pI n implies p-1 n3-1. 

Then let a be any integer prime to n so that an- 
- 

1 (mod n) and an - E 1 
(mod n) and an - 1 (mod n) but anl+n+l 1 (mod n). It is not hard to find 
such an a because of the assumption (159) on n. Set b an (mod n) and c--b 
(mod n). This time (157) defines a recurrence where n has an I signature and each 
prime p I n is an S prime. As noted in Section 8, however, these I composites never 
have an acceptable I signature as they are caught by the form test. An example of 
this phenomenon is given in Section 8 (see (100)) with n = 1537 and a = 36. 

17. The Recurrence Mod Prime Powers. We finally prove a congruence that was 
needed in Sections 1 and 4. 

THEOREM 14. Let p be any prime. Then for all integers k > 1 

(160) A (pk) =-A ( pkl ) (mod pk ). 
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COROLLARY 15. Let p be any prime and m be any integer. Then for all integers 
k? 1 

A(mpk) -A(mpk) (mod pk). 

We require the following 

LEMMA 16. There is a polynomial h(X, Y) with integer coefficients of degree 
p - 1, depending only on p, such that for all m 

(161) A(mp) = A(m)P + ph(A(m), A(-m)). 

Proof. As in the derivation of (132) we may assume m = 1 and expand A(1)P to 
obtain 

(162) A(l)P = A( p) + pH(a, ,B,y), 
where H( X, Y, Z) is a symmetric polynomial of degree < p - 1. Setting a,(X, Y, Z) 
=X+ Y+Z, 02(X,Y,Z)=XY+ YZ+ZX, A3(X,Y,Z)=XYZ, we have 
H(X, Y, Z) = G(al, 02, 03). Noting that a1(a, f, y) = A(1), 02(a, f, y) = A(-1) and 
a3(a, /3, y) = 1, we see that (162) immediately implies (161). The condition on the 
degree of h follows from the theory of symmetric functions. D 

Equation ( 161) for m = 1p gives 

(163) A( pk) = A(pk-l)P + ph(A( pk-l), A(_Pk-1)), 

To prove (160) we prove by induction on k ? 1 the equation (160) and also 

(165) A(-p ) A( Pk) (mod pk) 

For k = 1 we simply apply (163) and (164) with k = 1, noting that A(1)P- = 1), 
A(-1)P _ A(-1) (mod p). By induction we assume (160) and (165) with k replaced 
by k - 1. Then we also obtain 

(166) ph(A( pk-),A(=pk-l)) -ph(A(pk-2),A(-pk-2)) (modpk) 

Since in general u v (mod pk-) implies uP vP (mod pk), we also obtain 

(167) A( pk I)P A( pk-2)P (mod pk). 

Thus from (163), (166), and (167) we see 

A( Pk) A (pk-')P + ph (A(p k- 1), A(_pk- 1)) 

A(pk-2)P + ph(A(pk-2), A(_pk-2)) (mod pk) 

=A(P k-1). 

This gives (160). Equation (165) is proved similarly. Eli 
We note that it follows immediately from (160) that in the p-adic integers Zp that 

limA k A (pk ) exists. Set 

A+ limA(?pA). 

It follows immediately from (163) and (164) that 

4 =AP +ph(A=,AP), A=A +ph(A,A+). 
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For example, if p = 2, we see that (163) is just the doubling rule (55), and we obtain 

A+ = A2+-2A- A_ A2 -2A+, 

which can be solved to yield 

A+ (A+ -3)(A2+ +A+ +2) 0. 

Indeed we can easily show 

03 if r-s 1 (mod 2), 

(18i0 if r s 0 (mod2), 
k( lo -1 + 

| 2 if r + s 1 (mod 2). 

Equation (168) is proved by proving the following congruences by induction on k. In 
the case where r s 1 (mod 2) (which is equivalent to the statement 21 d) we 
show that for all k - 0 

A(2k) -A(-2k) 3 (mod2k). 

When r s -0 (mod 2) we show that for all k > 0 

A(2k) -A(-2k) 0 (mod 2k). 

Finally when r + s _1 (mod 2) (one of r, s is even and the other odd) we show that 

A(2k) + A(-2k) = '1 (mod2k), A(2k)A(-2k) -2 (mod2k). 

Our forthcoming paper [12] begins where we stop here and evaluates A + for all p 
and all r and s. They are Abelian algebraic integers. We then examine their 
implications for the earlier theory given above. 

In particular, we can now construct acceptable Q and I composites, (satisfying the 
Jacobi Symbol and F-tests), for certain cubics (39). Some of them contain no 
S-prime divisor, and so no outsiders are needed for that type of acceptable 
composite. But we still have no acceptable Q or I composite for the -23, -31, or -44 
A(n), either with or without S-prime divisors. They probably are very sparse if they 
do exist. One reason is this: If n is one of these constructed acceptable composites, 
the discriminant of its cubic is 0(n4). The probability that such a cubic has a 
discriminant equal to -23, -31, or -44 is therefore very small. There are other 
cogent reasons [12] why -23, etc. are so hard to obtain in these constructions, and it 
could be that they do not exist. 

A modest example of these new constructions is n = 87 = 3 29 in x3 - 26X2 + 

12x - 1 with d= +25717 (only). The class number of the real field Q(/d) is 3. 
Here, 3 and 29 are I primes, and n has an acceptable I signature 26, 12, 43, 5, 26, 12 
and an (indefinite) I form F = (87,49, -67). In [12] we give the p-adic techniques for 
constructing such examples. 

18. Acknowledgements. We mentioned S. Haber in Section 1. Later he told us that 
he also told Morris Newman about the problem who, independently, found n = 5212 

and an O(log n) algorithm. We do not know the details but have some reason to 
think that Newman's treatment differed from ours in both of these items. We would 
like to thank J. Owings for the idea for constructing the examples in Section 7, for 
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his interest and useful comments and for procuring some hard to find references. 
Finally, we wish to thank H. W. Lenstra and the Lehmers for their interest during 
the course of this investigation. 

Appendix I 

Perrin Primes 
The following table lists the first 120 primes in column 1. In column 2 is listed the 

type of prime in the Perrin field of discriminant -23 for f(X) = X3 - X - 1. Here, 
as usual, S denotes a split prime, Q denotes a 1-2 prime and I denotes an inert 
prime. The fractional notation in column 2 denotes the fraction of the full possible 
period. That is, the notation S/2 means the S prime has period W= (p - 1)/2, 
Q/3 means the Q prime has period W = (p2 - 1)/3 and I/21 means the I prime 
has period (p2 + p + 1)/21. Finally, the third column gives the factorization of the 
period W (where we place a p if W itself is prime). 

p type W factored p type W factored 

2 I p 179 1 74603 
3 I p 181 Q/3 2'3-5-7- 13 
5 Q 2'3 191 Q/5 27.3 19 
7 Q 243 193 1 3 7- 1783 
11 Q 23-3-5 197 1 19 2053 
13 1 3 61 199 Q 24-32-52.11 
17 Q 25.32 211 S 2-3 5-7 
19 Q/2 22.32.5 223 S/2 3 37 
23 R 2 11 227 Q 23 * 3 19 113 
29 1 13 67 229 Q/24 5 19 * 23 
31 1 3 331 233 I 7 * 7789 
37 Q 23'. 32 . 19 239 I 19 3019 
41 I p 241 Q 25.3.5. 112 

43 Q/8 3* 7 11 251 Q 23'. 32. 53 .7 
47 1 37 61 257 1 61 1087 
53 Q/2 22 33 13 263 Q/2 23 * 3 * 11 131 
59 S 2 29 269 1 13 37 151 
61 Q/4 2 35 - 31 271 S 2 33 5 
67 Q 2'3 - 11 17 277 1 7 19 - 579 
71 I p 281 Q/7 2 43 5 47 
73 1 3 1801 283 Q 23 3 47 *71 
79 Q/2 2 43 5 13 293 Q/14 22.3 7 73 
83 Q/3 23 7 41 307 S 2 32 .17 
89 Q/2 23.32.5 . 11 311 1 19 * 5107 
97 Q/3 26-72 313 Q/6 23 13 - 157 
101 S 22.52 317 S 22.79 
103 Q/3 24-13 17 331 1 3 7 5233 
107 Q/4 233 53 337 Q/6 24 7 132 
109 Q/8 33511 347 S/2 p 
113 Q/3 2'719 349 1 3 19 2143 
127 1 35419 353 1 19 * 6577 
131 I p 359 Q/10 23.32. 179 
137 Q/48 17 23 367 Q 25 3 23 61 
139 1 313 499 373 Q 23 3 11 17 - 31 
149 Q/24 52.37 379 Q/2 22 33'. 5 . 7 . 19 
151 1/21 p 383 Q/8 25 -3 191 
157 Q/2 22 3 13 79 389 Q/2 22- 3 .5 13 97 
163 1/3 7 19 67 397 1/3 31 1699 
167 S 2 - 83 401 Q 25 3 52 67 
173 S 22 43 409 1/3 p 
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p type W factored P type W factored 

419 Q/2 22 3 .5- 7 11 19 547 1/3 163 613 
421 Q/3 2 s5 7 211 557 Q/ 18 22 31 139 
431 Q/2 24.35 - . 43 563 Q/8 3 47281 
433 Q 25 33 7 31 569 Q 24 3 5 19 71 
439 1 3 .312 67 571 Q 23 3 5 11 13 19 
443 1 7 28099 577 1 3 19 5851 
449 S/2 25 7 587 1 547 631 
457 Q 24 3 19 229 593 s 24 37 
461 1 373 571 599 s 2 13 23 
463 S/2 3 7 11 601 1/3 13-9277 
467 Q/18 22 13 233 607 s 2 3 101 
479 Q 26 3 5 239 613 Q 23.32.17 307 
487 1 3 7 11317 617 Q/6 23 7*11 103 
491 1 37 6529 619 Q/6 22. 531 103 
499 1 3 7 1092 631 Q/6 23*3 5 7 79 
503 Q/2 23. 32. 7 .251 641 Q/6 27 5 107 
509 1 43 6037 643 Q 23 3 7 23 107 
521 Q/6 23 3 5 13 29 647 1 211 1987 
523 Q/3 23 3 29 131 653 1 7. 132. 192 
541 1/3 7 13963 659 Q 233 5 7 11 47 

Appendix 2 

Perrin Signature Program 

This is an HP-41C program for the Perrin signatures. For the signature of n 
(mod m) with n odd, place n, m in the stack and execute PS. If m > 105, it requires 
double precision and goes slower. Flag 2 is then set at instruction 4 and LBL 07 is 
used. If m > 109, there may be error, but n can be < 1010. PS could be altered to 

Perrin Signatures 
LBL PS 3 XEQ 02 RCL 06 RCL 07 LAST X MOD RCL 11 END 
I E5 STO 03 STO 10 RCL01 RCL08 X/2 13 STO08 
X < Y? 0 RCL 02 XEQ 02 RCL 09 RCL 00 RCL 15 - 

SF02 2 RCL05 STO01 RCL 10 MOD - RCL00 
RDN LBL 05 XEQ 02 + FC?C 01 X < > Y STO 15 MOD 
STO 00 STO 06 STO 08 XEQ 04 RDN RCL 00 RDN STO 07 
RDN RDN - LBL 10 GTO 05 MOD STOIND 15 + 
STO 17 STO 05 XEQ 04 FS? 01 LBL 07 2 ISG 16 RCL 00 
STO 13 RDN STO 07 GTO 03 13 * GTO 08 MOD 
LN STO 04 RCL 03 GTO 01 STO 15 + STO 01 STO 09 
2 RCL 13 RCL04 LBL02 .005 R RCL09 RCL04 
LN X = 0? XEQ02 X/2 STO 16 X/2 RCL 08 GTO 10 
/ GTO 06 + X <> Y LBL08 RCL 00 STO 03 LBL 06 
INT RCL 14 XEQ04 - 7 MOD - CF 02 
2 X > Y? STO 09 LASTX ST-15 + RCL 00 RCL 01 
X <> Y GTO 00 RCL 04 - RCLIND 15 7 MOD STOP 
Y,X ST- 13 RCL03 LBL04 ENTER RCL 15 STO02 RCL02 
ST-13 SF01 XEQ02 RCL00 ENTER - RCL01 STOP 
2 LBL 00 RCL 05 MOD I E5 STO 15 + RCL 03 
/ 2 RCL 02 RTN MOD RDN RCL 00 STOP 
STO 14 ST/14 XEQ02 LBL01 - RCLIND 15 MOD RCL04 
I FS? 02 STO 03 X <> 03 ENTER - STO 04 STOP 
STO 01 GTO 07 - X <> 02 ENTER LASTX RCL 10 RCL 05 
CHS RCL01 XEQ04 STO01 LASTX - RCL 12 STOP 
STO02 RCL 06 STO 02 LBL 03 * RCL 00 STO 10 RCL 06 



300 WILLIAM ADAMS AND DANIEL SHANKS 

accept n even, but in practice one does the signature of n + 1 instead and 
extrapolates. The -31 sequence requires minor changes if m < 105. Likewise, the 
-44 for m odd and < 105 is possible with rather more changes. The signature, which 
is in memory 01 thru 06, is given at LBL 06. This computer interprets (mod 0) as "do 
nothing", so m = 0 gives Perrin's A(n) unreduced if it does not overflow, i.e., if 
n < 81. This program has been very helpful during this investigation. 
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